

Design Report

West Side Sewer Extension Project

South & Center Chautauqua Lake Sewer Districts

Executive Summary

The South and Center Chautauqua Lake Sewer Districts (SCCLSD) owns and operates its own wastewater collection and treatment system which consists of gravity sewers, vacuum sewers, low pressure sewers, traditional pump stations, and a Wastewater Treatment Plant (WWTP). The SCCLSD serves communities along the east, south, and west sides of Chautauqua Lake in Chautauqua County, New York. Chautauqua Lake (the Lake) is one of the primary sources of cultural and recreational attraction in Chautauqua County, as well as serving as the drinking water supply for multiple Public Water Systems and individual users.

In 2004 the New York State Department of Environmental Conservation (NYSDEC) officially designated the Lake as an impaired water body per Section 303(d) of the federal Clean Water Act, primarily due to the excessive phosphorous loading that is causing problematic growth of underwater nuisance vegetation and algal blooms. A Total Maximum Daily Load (TMDL) phosphorous allocation was completed in 2012 and identified various sources of phosphorous loadings to the Lake. One source identified was the private septic systems utilized by properties not served by a public WWTP. Approximately 20 percent of shoreline properties in the north basin and 34 percent of shoreline properties in the south basin rely on individual septic systems for sewage disposal. Many of these septic systems do not meet current standards and are nearing the end of their useful life. Based on this fact, the SCCLSD decided to pursue extending their service area along the Route 394 beltway on the west side of the Lake, and the project has been identified as the West Side Sewer Extension.

The West Side Sewer Extension proposed improvements have been grouped into three phases:

- Phase 1 inclusive of the southwest side of the lake between the existing SCCLSD boundary and Stow.
- Phase 2 inclusive of the northwest side of the lake between Stow and North Chautauqua Lake Sewer District.
- Phase 3 inclusive of the Hamlet of Ashville.

This report provides the basis of design for the Phase 1 expansion, while also examining the impacts of the Phase 2 and 3 expansion on existing and proposed infrastructure.

The West Side Sewer Extension Phase 1 project is anticipated to generally consist of the following infrastructure:

- 223 Simplex Grinder Pump Stations
- 6 Duplex Grinder Pump Stations (2 stations with a primary pump and spare and 4 stations with a primary pump and a secondary pump with no spare)
- New Hadley Bay Pumping Station
- Sunrise Cove Pumping Station Upgrade
- New SR 394 Pumping Station

- Goose Creek Pumping Station Upgrade
- 25,000 LF of 1.25-inch HDPE lateral piping
- 21,000 LF of 2-inch HDPE force main
- 7,200 LF of 3-inch HDPE force main
- 750 LF of 8-inch HDPE force main
- 21,650 LF of 10-inch HDPE force main
- Combination air-vacuum relief valves

• In-line isolation valves

• Force main clean outs

Check valves

A summary of the Engineer's Opinion of Probable Project Cost for the Phase 1 base bid improvements is presented below. Following the base bid summary are summaries of two alternate items that were discussed during a March 19, 2020 value engineering meeting between SCCLSD staff, the Board's Technical Committee and GHD. These items will be included in the bid package as bid alternates.

Base Bid - Engineer's Opinion of Probable Project Cost

Item	QTY	Total Cost
Force Main Installation – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, and testing)	50,600 LF	\$7,860,000
Simplex/Duplex Grinder Pump – Complete (Including labor, materials and appurtenances, excavation, installation, lateral connection, backfill, restoration. power supply, and testing)	229 EA	\$3,935,000
New Hadley Bay Pumping Station – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration. power supply, and testing)	1 EA	\$500,000
Sunrise Cove Pump Station Improvements – Complete (Including labor, materials and appurtenances, demolition, bypass pumping, and testing)	1 EA	\$75,000
New SR 394 Pumping Station – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, power supply, and testing)	1 EA	\$675,000
Improvements to Goose Creek Pump Station and Interconnection to Existing Force Main – Complete (Including labor, materials and appurtenances, demolition, pump replacement, excavation, backfill, restoration, and testing)	1 LS	\$210,000
Land Acquisition (New pumping station site and easements)	TBD	\$75,000
	Subtotal:	\$13,330,000
10%	\$1,340,000	
Engineering, Legal, and Ad	dministration:	\$1,810,000
Project	Cost (2020):	\$16,480,000
Project Cost with Construction Cost Escalated ~2% to2022 C	Construction Period:	\$16,800,000

The two alternatives to the base design presented in this report will be detail designed and may be included as alternates in the construction bid documents. This approach will allow SCCLSD to receive actual contractor bids and analyze in relation to the funds available for the project while allowing the Base Bid contract value to remain as low as feasible.

Alternate 'A' Bid: Extend SR 394 Force Main to Sherman's Bay - Engineer's Opinion of Probable Project Cost

Item	QTY	Total Cost
Force Main Installation – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, and testing)	3,600 LF	\$650,000
DEDUCT – Downsize New SR 394 Pumping Station – Complete	1 LS	(\$75,000)
DEDUCT - Improvements to Goose Creek Pump Station and Interconnection to Existing Force Main – Complete (Including labor, materials and appurtenances, demolition, pump replacement, excavation, backfill, restoration, and testing)	1 LS	(\$210,000)
	Subtotal:	\$365,000
10%	Contingency:	\$35,000
Project	\$400,000	
Project Cost with Construction Cost Escalated Construe	~2% to 2022 ction Period:	\$410,000

Alternate 'B' Bid: Design of "Duplex Lift Stations - Engineer's Opinion of Probable Project Cost

Item	QTY	Total Cost
DEDUCT - Duplex Grinder Station without installed spare – Complete		
(Including labor, materials and appurtenances, excavation, installation, lateral connection, backfill, restoration. power supply, and testing)	4 EA	(\$80,000)
Duplex Grinder Station with installed spare – Complete		
(Including labor, materials and appurtenances, excavation, installation, lateral connection, backfill, restoration. power supply, and testing)	4 EA	\$340,000
	Subtotal:	\$260,000
10%	\$30,000	
Project	\$290,000	
Project Cost with Construction Cost Escalated Construe	\$300,000	

With the project bid documents organized as presented above, the Engineer's Opinion of Probable Project Cost Base Bid project is \$16,800,000. The combination of the Base Bid and Alternate Bid(s) A and B increase the Engineer's Opinion of Probable Project Cost to \$17,510,000.

The table below presents the projected current and future hydraulic loading of Phase 1, 2, and 3 of the West Side Sewer Extension, as well as the existing Sunrise Cove, Goose Creek, and Sherman's Bay Pumping Stations. The New Hadley Bay Pumping Station will be designed to accommodate flows from Phase 2 and areas of Stow and Hadley Bay of Phase 1. The New SR 394 Pumping Station will be designed to accommodate flows from Sunrise Cove, Phase 1, and Phase 2.

Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ start of Phase 3 (Year = 2034)	Future Flow (gpm) @ Phase 1, 20-year buildout (Year = 2041)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)	Future Flow (gpm) @ Phase 3, 20-year buildout (Year = 2053)
Goose Creek Pumping Station	231	275	311	370	370	370
Sherman's Bay Service Area	273	325	367	437	437	437
West Side Sewer Service Area	312	680	850	1,010	1,107	1,125
Total Conveyance Requirement	816	1,280	1,528	1,817	1,914	1,932
Approx. % of Current Sherman's Bay Pump Station Capacity	68%	107%	127%	151%	160%	161%

Projected Current and Future Hydraulic Loadings

Note: Sherman's Bay Pump Station currently has a rated capacity of 1,200 gpm.

Table of Contents

1.	Proje	ct Backgro	und and History	1
	1.1	Site Infor	mation	2
	1.2	Ownersh	p and Service Area	3
	1.3	Existing F	Facilities and Present Condition	4
	1.4	Definition	of the Problem	5
	1.5	Financial	Status	5
2.	Alterr	natives Ana	alysis & Recommended Alternative	5
3.	Basis	of Design	Recommendations	7
	3.1	Proposed	Sewer System Improvements	8
	3.2	Current a	nd Future Hydraulic Loads	. 12
		3.2.1	Projected Demands	. 12
	3.3	Existing F	Pump Station Analysis	. 14
		3.3.1 3.3.2 3.3.3	Proposed Conveyance Requirements Existing Sherman's Bay Pumping Station Existing Lakewood Pumping Station	. 15
	3.4	Transmis	sion and Collection Design	. 20
	3.5	Pumping	Design	. 21
		3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7	Grinder Pumping Stations New Hadley Bay Pumping Station Sunrise Cove Pumping Station New SR 394 Pumping Stations Goose Creek Pumping Station Sherman's Bay Stations Lakewood Pumping Stations	. 21 . 23 . 24 . 26 . 26

Figure Index

- Figure 1.1 Sewer Districts and Pumping Facilities
- Figure 1.2 Phase 1 Boundary Map
- Figure 2.1 Pipe and Pumping System Network-Key Map
- Figure 2.2 Pipe and Pumping System Network
- Figure 2.3 Pipe and Pumping System Network
- Figure 2.4 Pipe and Pumping System Network
- Figure 2.5 Pipe and Pumping System Network
- Figure 2.6 Pipe and Pumping System Network
- Figure 2.7 Pipe and Pumping System Network
- Figure 3.1 Sherman's Bay Pumping Station Hydraulic Loading
- Figure 3.2 Lakewood Pumping Station Hydraulic Loading

Table Index

Table 1.1	U.S. Census Historical Population	3
Table 3.1	Base Bid: Engineer's Opinion of Probable Project Cost	10
Table 3.2	Alternate 'A' Bid: Extend SR 394 Force Main to Sherman's Bay - Engineer's Opinion of Probable Project Cost	11
Table 3.3	Alternate 'B' Bid*: Design of "Duplex Lift Stations - Engineer's Opinion of Probable Project Cost	11
Table 3.4	West Side Sewer Extension (Ph. 1 and 2) Hydraulic Load Projection	13
Table 3.5	Hamlet of Ashville (Phase 3) Hydraulic Load Projection	13
Table 3.6	Existing Service Area Hydraulic Load Projection	13
Table 3.7	West Side Sewer Extension Flow Projection	15
Table 3.8	Sherman's Bay Pumping Station Inflow Projection	16
Table 3.9	West Side Sewer Extension Flow Projection	18
Table 3.10	Target Pipeline Velocities	20
Table 3.11	New Hadley Bay Pumping Station Flow Projection	22
Table 3.12	Theoretical Range of Pump Head Requirements	22
Table 3.13	Upgraded Sunrise Cove Pumping Station Flow Projection	23
Table 3.14	Theoretical Range of Pump Head Requirements	23
Table 3.15	New SR 394 Pumping Station Flow Projection	24
Table 3.16	Theoretical Range of Pump Head Requirements	25
Table 3.17	Upgraded Goose Creek Pumping Station Flow Projection	26
Table 3.18	Theoretical Range of Pump Head Requirements	26

Appendix Index

Appendix A	Flow Schematic

- Appendix B Hydraulic Loads
- Appendix C Cost Estimate
- Appendix D Preliminary Soil Boring Logs
- Appendix E Hydraulic Model
- Appendix F Pump Curves

1. Project Background and History

The South and Center Chautauqua Lake Sewer Districts (SCCLSD) were formed in 1970 after studies indicated significant health and environmental issues were occurring as a result of on-site disposal of sewage. The Chautauqua County Health Department stopped most development in the area until adequate public sanitary facilities could be implemented. Subsequently, the SCCLSD constructed a Publically Owned Treatment Works (POTW) Wastewater Treatment Plant (WWTP) which was placed into operation in 1980. The creation of the SCCLSD and construction of their WWTP allowed the consolidation of the sewage collection and treatment for three Villages and four Towns.

Since that time, the SCCLSD has continued to own and operate their WWTP, as well as expand their service area by means of furthering the collection system. Presently, the SCCLSD serves approximately 5,000 customer connections, covering approximately 180 square miles and 8 communities including Lakewood, Celoron, Ellery, North Harmony, Harmony, Busti, Bemus Point, and Ellicott. Existing infrastructure utilized to service these areas generally consists of the following, and as shown in Figure 1.1:

- Wastewater Treatment Plant
- Pumping Stations
- Gravity sewer lines
- Vacuum sewer lines
- Force main/pressure sewer lines.

The SCCLSD is extending its sanitary sewer system to include the west side of Chautauqua Lake and service approximately 770 developed parcels that currently have private septic systems. The extension is required as the result of existing private septic systems not meeting standards and/or approaching the end of their useful life. These septic systems are a source of phosphorus loading to Chautauqua Lake via direct or tributary waterways discharging into the lake. In 2002, the lake phosphorus level exceeded the New York State Department of Environmental Conservation (NYSDEC) water quality guidance value of 0.020 mg/L, which is in place to protect recreational uses of lakes. In 2004, Chautauqua Lake was officially designated as an impaired waterbody by the NYSDEC per Section 303(d) of the Federal Clean Water Act. In 2012, a Total Maximum Daily Load (TMDL) phosphorus allocation for the lake was completed. The TMDL identified a number of sources that contribute to the lake's excessive phosphorus levels, with one of those contributors being private septic systems within the lake's watershed.

Based on the findings of the 2012 TMDL, NYSDEC reporting, and the water quality of Chautauqua Lake, SCCLSD retained the services of a consulting engineer to examine the feasibility of extending public sewer to all properties contiguous to Route 394 (maximum depth of 500 feet from centerline to the west) and properties between the Lake and Route 394 along the west side of the Lake, in the Towns of North Harmony and Chautauqua. In addition, portions of the Hamlet of Ashville would be transferred from private to public sewers. This previous work was summarized in the July 2015 *Sewer Extension for West Side Sewer Chautauqua Lake, Engineering Report for Sewer Extension* (2015 Sewer Extension Report), and the September 2017 Map, Plan, and Report titled *Sewer*

Extension through the Hamlet of Stow for the West Side of Chautauqua Lake (Phase 1 of the West Side Sewer Extension) (2017 Phase 1 Sewer Extension Report), both prepared by O'Brien & Gere.

The proposed improvements from the 2015 Sewer Extension Report were grouped into three phases:

- Phase 1 inclusive of the southwest side of the lake between the existing SCCLSD boundary and Stow.
- Phase 2 inclusive of the northwest side of the lake between Stow and North Chautauqua Lake Sewer District.
- Phase 3 inclusive of the Hamlet of Ashville.

This report provides the basis of design for Phase 1 of the expansion project and will outline projected hydraulic loads, sizes of pipelines, new pump requirements (new customer grinder stations and intermediate pumping stations), and rehabilitation requirements to the existing Sunrise Cove and/or Sherman's Bay and Lakewood pumping stations.

1.1 Site Information

The existing SCCLSD service area is shown on Figure 1.1. Phase 1 of the West Side Sewer Extension is primarily located in the Town of North Harmony extending from north of the intersection of Route 394 and North Maple to the northern limits of the Hamlet of Stow, which is depicted on Figure 1.2. The Town of North Harmony is located within Chautauqua County, New York along the southwest shore line of Chautauqua Lake, approximately 15 miles north of the City of Jamestown and 70 miles southwest of the City of Buffalo. The Town of North Harmony, which was established in 1919 from part of the Town of Harmony, totals approximate 42 square miles and is home to over 2,200 residents (2010 Census) with over 900 households.

The primary soils within the project area are Busti Silt Loam (BsB and BsC), Canandaigua Silt Loam (Cb and Cc), Chautauqua Silt Loam (CkB, CkC, and CkD), and Raynham Silt Loam (Rf) (Source: USDA NRCS Soil Survey, http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). These soils are classified as "very limited" for shallow excavation operations resulting from the potential of soils saturation, high probability of unstable excavation walls, and high probability of having high dust levels during construction. To alleviate potential construction issues, the use of trench shields for wall stability, trash pumps for ground water control, and/or the use of trenchless installation methods may be required.

The topography within the project and surrounding area can be described as rolling hills from north to south along Route 394 and easterly side slopes from Route 394 to Chautauqua Lake. The project boundary is within several FEMA-regulated 100-year floodplains. The areas with potential influences of floodways can be found on FEMA Community-Plan Numbers 361076 0016 B, 3610760 0018 B, 3610760 0031 B, 3610760 033 B, and 361060 0004 C. These panels have not been included within this report. The floodplains should not present an issue for this project as the majority of the facilities are buried pipelines. The design team will make themselves aware of the flood levels when locating above ground infrastructure as well as buried infrastructure that could be a potential source of inflow.

Portions of the project boundaries are found within archaeological sensitive areas found north of Ramsey Road through the Hamlet of Stow and south of Cheneys Road through the Sherman's Bay

pumping station. These areas will be cleared through SHPO prior to bidding the project and at this time do not present a major concern as the pipeline will be installed in previously disturbed areas between the roadway and existing utilities. Additionally, the contract will be developed to provide the contractor the ability to install the underground pipelines through trenchless installation methods.

1.2 Ownership and Service Area

The West Side Sewer Extension service area is currently serviced by private septic systems and individually maintained by the corresponding property owner. Many of these systems are failing or reaching the end of their useful life. These failing systems are one of the leading contributors to elevated phosphorus levels within Chautauqua Lake. To reduce the phosphorus levels within the lake, Chautauqua County (County) elected to expand the SCCLSD service area and install public sewers to be owned and operated by the SCCLSD. The new facilities will be conveyed through a series of existing pumping stations (Sherman's Bay and Lakewood Pumping Stations) to the existing SCCLSD Wastewater Treatment Plant (WWTP).

The WWTP service area covers communities along the southern and eastern border of Chautauqua Lake, which includes portions of the Towns of Busti, Ellery, Ellicott, North Harmony (including the Hamlet of Ashville), and the Villages of Celoron and Lakewood. The historical populations (Town/Village wide not just service area) since 1980 and the estimated 2018 populations for each of these communities are presented in Table 1.1. Over the last several decades, the area has witnessed a continuous decline in its population. Based on the last 48 years of available census data, the total population of the area has decreased by roughly 16 percent. The 2018 U.S. Census Bureau annual population estimates resulted in a regional estimated population of 25,892.

Year	Town of Busti	Town of Ellery	Town of Ellicott	Town of North Harmony	Village of Celoron	Village of Lakewood	Region
1980	8,728	4,617	9,979	2,263	1,405	3,941	30,933
1990	8,050	4,534	9,457	2,301	1,232	3,564	29,138
	(-7.8%)	(-1.8%)	(-5.2%)	(+1.7%)	(-12.3%)	(-9.6%)	(-5.8%)
2000	7,760	4,576	9,280	2,521	1,295	3,258	28,690
	(-3.6%)	(+0.9%)	(-1.9%)	(+9.6%)	(+5.1%)	(-8.6%)	(-1.5%)
2010	7,351	4,528	8,714	2,267	1,112	3,002	26,974
	(-5.3%)	(-1.0%)	(-6.1%)	(-10.1%)	(-14.1%)	(-7.9%)	(-6.0%)
2018	7,209	4,339	8,333	2,157	1,037	2,817	25,892
	(-1.9%)	(-4.2%)	(-4.4%)	(-4.9%)	(-6.7%)	(-6.2%)	(-4.0%)

Table 1.1 U.S. Census Historical Population

Source: www.census.gov

Key: Population (% change from previous Census)

Even with a regional decline in population, it is still reasonable to project some population growth resulting from the installation of a public sewer system within the West Side Sewer Extension service area. The largest potential for growth would be anticipated along the Route 394 corridor near the Interstate 86/Route 17 exit ramp as there are large vacant parcels prime for residential subdivisions or commercial hotel developments. Based on the current dense population along the Chautauqua Lake shorelines, minimal growth is expected in those areas. Previous reports that have been accepted by regulating bodies estimated an aggressive growth rate of 2.5 percent per year over the next 20 years for a total population change of approximately 65 percent for the West Side Sewer Extension service area as well as the downstream service area for the West Side Sewer Extension.

1.3 Existing Facilities and Present Condition

As mentioned previously, the West Side Sewer Extension area is currently serviced by private septic systems with the majority of them either failing or reaching the end of their useful life. These systems, which are tributary to the Chautauqua Lake watershed, are partly responsible for increasing the phosphorus loading on the lake to unacceptable levels. With the NYSDEC designating the lake as an impaired waterbody and the development of a TMDL phosphorus allocation for the lake, the SCCLSD has chosen to expand their service area to reduce the phosphorus loading contributions from failing septic systems.

Sanitary wastewater will be collected through a series of grinder pumps, force mains, and intermediate pumping stations to convey flow to the existing Sherman's Bay Pumping Station, which ultimately conveys flow to the WWTP. The Sherman's Bay Pumping Station, which was built in 1973, operates with two constant speed pumps with design points of 1,200 gpm at 117 feet of head. The station discharges through a 12-inch force main conveying flow to a 24-inch gravity inceptor sewer, which is tributary to the Lakewood Pumping Station. The Lakewood Pumping Station, which also was built in 1973, operates with two variable-speed pumps with design points of 2,600 gpm at 64 feet of head and one constant-speed pump with a design point of 1,700 gpm at 40 feet of head. The Lakewood Pumping Station discharges through a 20-inch force main conveying flow to a 30-inch gravity interceptor sewer, which is tributary to the WWTP. An overall flow schematic is included as Appendix A of this Report.

The WWTP was placed online in 1980 and was designed to be a two-stage activated sludge facility with aeration and nitrification tanks that provide carbonaceous oxidation and nitrification, respectively. The facility has a rated capacity of 4.1 million gallons per day (mgd) with average flows ranging from 2.0 to 2.3 mgd. The WWTP service area is predominately residential with some commercial and industrial areas, providing wastewater treatment to approximately 5,000 customers.

The 2015 Sewer Extension Report examined the WWTP capacity to determine if the treatment plant had adequate capacity to accept and treat the flows from the West Side Sewer Extension. It was determined that the limiting factor for the WWTP is the first stage clarification process with a peak hourly flow rate of 9.2 mgd. Based on the projected design loads of the existing SCCLSD service area coupled with the West Side Sewer Extension area, and an in-depth analysis of the various processes at the treatment plant, the existing WWTP will be able to convey and process average day flow and average day and maximum day organic, solids, phosphorous and TKN loads. The 2015 Sewer Extension Report found that the WWTP will not be able to provide complete primary

and secondary treatment at peak hourly flows greater than 9.2 mgd, and that flows will become restricted above 15.2 mgd with surcharging/backup conditions occurring.

1.4 Definition of the Problem

The West Side Sewer Extension service area is currently serviced by private septic systems and individually maintained by the corresponding property owner. Many of these systems are failing or reaching the end of their useful life. These failing systems are a contributor to elevated phosphorus levels within Chautauqua Lake. To reduce the phosphorus levels within the lake, the County elected to expand the SCCLSD service area and install public sewers to be owned and operated by the District. Flows from the new collection facilities will be conveyed through a series of existing pumping stations (Sherman's Bay and Lakewood Pumping Stations) to the existing WWTP, as outlined in Section 1.3 of this Report and seen in Appendix A.

This design report will determine the service area hydraulic loads, both current and future, which will be utilized to determine size of the proposed infrastructure. Additionally, the existing collection system that this service area will be directly tributary to will be reviewed to determine if sufficient capacity is available and detail any recommendation for improvements.

1.5 Financial Status

The project will be financed through a combination of grants and New York State Environmental Facilities Corporation (NYSEFC) Clean Water State Revolving Fund (CWSRF) funding at a rate of 0 percent for 30 years. The September 2017 Phase 1 Sewer Extension Report included the anticipated project cost of \$16,888,000 (2017 dollars) with \$8,916,000 being financed through NYSEFC and the remaining \$7,972,000 through grants.

Debt service and operation/maintenance costs will be spread evenly across equivalent dwelling units (EDU) in the sewer extension service area. An EDU is equal to a single family dwelling water usage. The estimated cost per EDU is \$1,000 annually with \$646 contributing to capital cost and \$354 for operation and maintenance of facilities. The \$1,000 annual EDU charge will be applied to all developed properties and a \$100 annual charge will be applied to all undeveloped properties.

Properties within the sewer extension area that are already serviced by SCCLSD via the existing Town of North Harmony Sewer District will remain responsible for their existing applicable district charge with no financial responsibilities for the West Side Sewer Expansion project.

It should be noted that the annual EDU charge does not include the private property lateral or interior plumbing improvements to connect to the public sewer system or the permit fees to SCCLSD. Each user will be responsible to pay the cost to install a sewer lateral from their dwelling to the proposed SCCLSD collection system grinder pump. The connection locations will vary based on topography, but it is SCCLSD's desire to have the connection point located near the right-of-way. The owner's expense will vary depending on type of service and subsurface conditions.

2. Alternatives Analysis & Recommended Alternative

The alternatives analysis for the providing technically feasible and cost-effective public sewers to the un-sewered areas along the west side of Chautauqua Lake (West Side Sewer Extension) was

previously conducted and presented in the 2015 Sewer Extension Report. The 2015 Sewer Extension Report evaluated six potential alternatives, which are generally described below along with the corresponding conclusions associated with each alternative:

- 1. Alternative 1 Septic Tank System (No Action)
 - Maintaining the use of private septic systems while also addressing the excessive phosphorous loadings of Chautauqua Lake would require either the installation of advanced treatment between septic tanks and absorption fields, or installation of a holding tank with subsequent removal and disposal of contents at a nearby WWTP.
 - This alternative was not recommended because it would not reliably provide reduction in phosphorous loading to the Lake.
- 2. Alternative 2 Gravity Collection System
 - Installation of traditional gravity flow collection sewer systems and lift stations.
 - This alternative was not recommended due to the known poor soil conditions and high groundwater in the area which would increase construction risks and costs, as well as the rolling hilly terrain causing deeper gravity sewer installations and many lift stations, furthering increasing project cost.
- 3. Alternative 3 Grinder Pump / Pressure Sewer Collection System
 - This type of system lends itself well to the hilly terrain of the project area. Small diameter pipes following the surface topography with shallower bury depth would work well with the poor soil conditions and high groundwater of the project area.
 - SCCLSD owns and operates other grinder pump collection systems currently, are familiar with these types of systems and maintenance required, and have been an effective collection system.
- 4. Alternative 4 Vacuum Sewer Collection System
 - Installation of a vacuum sewer system. As the name implies the collection system is operated under a partial vacuum. This type of system can overcome the variable terrain seen in the West Side Sewer Extension area.
 - The SCCLSD currently owns, operates, and maintains vacuum sewers in portions of their collection system. The SCCLSD has had difficulty with maintenance and consider the required maintenance costs to be excessive. Due to this reason, this alternative was not recommended.
- 5. Alternative 5 Effluent Sewer Collection System
 - Two different types of effluent sewer collections systems were examined; septic tank effluent pump (STEP) and septic tank effluent gravity (STEG).
 - STEP systems would still require pumping out of the septic tanks on a routine basis, which would become an additional maintenance requirement placed on the SCCLSD. Also, while the STEP system provides primary treatment at the septic tank, the SCCLSD WWTP is designed to provide full treatment, and the when the septic tanks are pumped out they would be disposed of at the WWTP, negating any positive effects of initial

primary treatment provided by the STEP systems. Ultimately, this alternative was not recommended for these reasons.

- STEG systems rely on gravity flows effluent from septic tanks, similar to Alternative 2, and was therefore not recommended.
- 6. Alternative 6 Cluster / Decentralized Collection System
 - This alternative considered smaller "cluster" collection systems to serve individual areas, with each collection systems flows being treated at a separate wastewater treatment facility. It was estimated that eight or more individual cluster collection system and treatment facilities would be required to service the West Side Sewer Extension area, with each treatment facility requiring to be permitted by the NYSDEC.
 - This alternative was not recommended due to regulatory requirements and increased project costs associated with multiple treatment facilities.

The goal of the West Side Sewer Extension is to provide:

- Environmentally sound alternative to the reliance on septic systems by the residents along the western shore line of Chautauqua Lake.
- Long-term protection of area water resources, in particular, Chautauqua Lake, ground water, and local streams and creeks.

The 2015 Sewer Extension Report identified Alternative 3 – Grinder Pump / Pressure Sewer Collection System as the preferred alternate as it was the most efficient and cost-effective means to implement the West Side Sewer Extension. The 2015 Sewer Extension Report also recommended to evaluate the use of gravity sewer during preliminary design to minimize the need for grinder pump stations and to save on future operation and maintenance costs.

The 2017 Phase 1 Sewer Extension Report identified the new District boundary, conceptual project facilities, and estimated project cost. The proposed facilities included a combination of gravity sewers, pressure sewers, grinder pumping stations, sewage pumping stations, and upgrades to the Sunrise Cove Pumping Station. The major components of the system included:

15,500 feet of gravity sewers

• 200 grinder pumping stations

• 36,300 feet of pressure sewers

New Sunrise Cove Pumping Station

• 3 intermediate pumping stations

The 2017 Phase 1 Sewer Extension Report included an estimated total project cost of \$16,888,000 (2017 dollars), including construction, engineering, legal, administration, and contingency.

This design report will further evaluate the district hydraulic loads to determine required pipeline sizes, pump sizes, existing pumping station improvements, and updated project cost estimates.

3. **Basis of Design Recommendations**

The basis of design recommendations will discuss in greater detail the proposed sewer system(s) in the new service area, complete a detailed analysis of current and future hydraulic loads of the

proposed West Side Sewer Extension service areas, and further evaluate existing downstream infrastructure that will be required to convey the new flows from the project.

3.1 Proposed Sewer System Improvements

As presented in Section 2 of this report, a grinder pump/low pressure sewer system was ultimately selected for the West Side Sewer Extension. While the 2017 Phase 1 Sewer Extension Report assumed approximately 15,500 feet of gravity sewers, preliminary layouts of gravity sewers included sewers that were in excess of 12 feet deep. Due to the assumed poor soil conditions and high groundwater in the area, the SCCLSD and GHD agreed that a small number of preliminary soil borings should be completed to further determine the feasibility of deeper gravity sewer lines. In November 2019, nine soil borings were completed throughout the Phase 1 project area where gravity sewers were contemplated. The soil boring logs from this subsurface investigation are included as Appendix D. The preliminary subsurface investigation indicated mostly moist silty-sandy overburden ranging from 10 to 15 feet, with two of the borings indicating refusal at 10 to 13 feet depth which is assumed to be the bedrock interface. Approximately half of the borings also indicated groundwater table anywhere from 5 to 8 feet below ground surface. Due to higher construction risks and increased project costs associated with these types of subsurface conditions, it was agreed between the SCCLSD and GHD that the Phase 1 project area is not conducive to gravity sewers and therefore the proposed system would be designed completely as a low pressure system.

In order to minimize the number of individual grinder pumps, grinder pumps will be located so as to service two parcels as topography, distance, and available space allows. Grinder pumps will be located within existing public right-of-ways (ROWs) where feasible. In areas near the Lake where the public road ROW is substantially higher in elevation than the lakeside houses, it is not feasible to locate the grinder pumps in the ROW due to the fact that the private lateral connections to the grinder stations could be up to 25 feet deep. In these situations, the grinder pump stations will be located closer to the house(s) either to the side or between the house(s) and the Lake. These instances will require new permanent easements.

Grinder pumps and force main piping systems must be designed to achieve flushing velocities of 2 to 5 feet per second at least once a day. Grinder pump discharge laterals are typically 1-1/4 inches in diameter, and discharge to central force mains that generally are 2 inches or larger diameter. High-density polyethylene (HDPE) pipe with fused joints is widely utilized for low pressure sewer systems and is a very appropriate piping material choice for trenchless installations, specifically horizontal directional drilling (HDD) which is anticipated to compose a substantial amount of the installation methods for the project due to various creek and road crossings as well as the poor subsurface conditions described above.

Flows from the West Side Sewer Extension Phase 1 and 2 areas will be conveyed to the south end of the project area. A pumping station will be required along Hadley Bay Road near Interstate 86 to collect flows from Phase 2, Stow, and Hadley Bay areas and boost system pressures to overcome a significant elevation increase along State Route 394 (SR 394) near Ramsey Road. The new Hadley Bay pumping station will also maintain adequate flow velocities within the force main to prevent buildup of solids which could potentially cause ongoing maintenance and operational issues.

Intermediate duplex pumping stations will be installed on four "branch" lines before connecting to the force main along SR 394. These branch lines will receive flows from multiple lake side simplex

grinder pump stations. Intermediate duplex pump stations are required to boost pressure allowing each branch force main to discharge into the SR 394 force main. The duplex pump stations will be bid with two different designs.

- 1. Under the Base Bid, each duplex pumping station will be designed without an installed spare and pump selection will be such that both pumps will operate concurrently to achieve the full range of head/flow requirements.
- 2. Under a duplex pump station Alternate Bid Item (Alternate 'B'), each duplex pumping station will be designed with an installed spare and pump selection will be such that each pump individually can achieve the entire range of flow/head requirements.

A pumping station will also be required at the south end of the Phase 1 service area to again boost system pressures to overcome a substantial elevation increase along SR 394 between the existing Sunrise Cove Pumping Station and the Sherman's Bay Pumping Station. With the addition of the new SR 394 pumping station the existing Sunrise Cove Pumping Station will be retrofitted to house new pumps and the existing 4-inch force main will be replaced with a 3-inch HDPE force main from the existing pumping station to the new SR 394 Pumping Station. The gravity flows that are currently collected at Sunrise Cove Pump Station will continue to do so with the exception of the BOCES School which will connect directly to the new SR 394 Pumping Station.

From the new pumping station flows will be conveyed to the Sherman's Bay Pumping Station in one of two alternates.

- Under the Base Bid, a new 10-inch HDPE force main along SR 394 will combine with the existing Goose Creek 8-inch PVC force main which discharges to the Sherman's Bay Pumping Station. With the combination of flows from the new SR 394 Pumping Station and the existing Goose Creek Pumping Station hydraulic improvements are required at the Goose Creek Pumping Station. The Goose Creek Pumping Station will be retrofitted to replace the existing discharge pumps with new pumps with higher discharge head capabilities.
- 2. Under a force main Alternate Bid Item (Alternate 'A'), a new 10-inch HDPE force main along SR 394 before discharging directly to the Sherman's Bay Pumping Station. The new force main will not combine with the existing Goose Creek force main and thereby no hydraulic improvements are required at the Goose Creek Pumping Station.

From the Sherman's Bay Pumping Station existing infrastructure will be utilized to convey flows to the SCCLSD WWTP. Flows from Sherman's Bay Pumping Station are pumped through a 12-inch PVC force main, and are subsequently conveyed through 24/27/30-inch gravity sewers to the Lakewood Pump Station. The Lakewood Pump Station 20-inch DIP discharge force main conveys flows to the Celoron Interceptor which empties to the SCCLSD WWTP.

The West Side Sewer Extension Phase 1 project is anticipated to generally consist of the following infrastructure under the Base Bid:

- 223 Simplex Grinder Pump Stations
- 6 Duplex Grinder Pump Stations (2 stations with a primary pump and spare and 4 stations with a primary pump and a secondary pump with no spare)

- New Hadley Bay Pumping Station
- Sunrise Cove Pumping Station Upgrade
- New SR 394 Pumping Station
- Goose Creek Pumping Station Upgrade
- 25,000 LF of 1.25-inch HDPE lateral piping
- 21,000 LF of 2-inch HDPE force main

- 7,200 LF of 3-inch HDPE force main
- 750 LF of 8-inch HDPE force main
- 21,650 LF of 10-inch HDPE force main
- Combination air-vacuum relief valves
- In-line isolation valves
- Check valves
- Force main clean outs

An itemized Engineer's Opinion of Probable Project Cost (OPPC) for Phase 1 (inclusive of the Base Bid and Alternates) is included as Appendix C. A summary of the Base Bid and Alternate OPPC are seen in Table 3.1, Table 3.2, and Table 3.3 below.

Table 3.1 Base Bid: Engineer's Opinion of Probable Project Cost

Item	QTY	Total Cost	
Force Main Installation – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, and testing)	50,600 LF	\$7,860,000	
Simplex/Duplex Grinder Pump – Complete (Including labor, materials and appurtenances, excavation, installation, lateral connection, backfill, restoration. power supply, and testing)	229 EA	\$3,935,000	
New Hadley Bay Pumping Station – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration. power supply, and testing)	1 EA	\$500,000	
Sunrise Cove Pump Station Improvements – Complete (Including labor, materials and appurtenances, demolition, bypass pumping, and testing)	1 EA	\$75,000	
New SR 394 Pumping Station – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, power supply, and testing)	1 EA	\$675,000	
Improvements to Goose Creek Pump Station and Interconnection to Existing Force Main – Complete (Including labor, materials and appurtenances, demolition, pump replacement, excavation, backfill, restoration, and testing)	1 LS	\$210,000	
Land Acquisition (New pumping station site and easements)	TBD	\$75,000	
	Subtotal:	\$13,330,000	
10% C	\$1,340,000		
Engineering, Legal, and Ad	\$1,810,000		
Project Cost (2020):			
Project Cost w/ Construction Cost Escalated ~2% to 2022 Construct	tion Period:	\$16,800,000	

Table 3.2 Alternate 'A' Bid: Extend SR 394 Force Main to Sherman's Bay -Engineer's Opinion of Probable Project Cost

Item	QTY	Total Cost
Force Main Installation – Complete (Including labor, materials and appurtenances, excavation, installation, backfill, restoration, and testing)	3,600 LF	\$650,000
DEDUCT – Downsize New SR 394 Pumping Station – Complete	1 LS	(\$75,000)
DEDUCT - Improvements to Goose Creek Pump Station and Interconnection to Existing Force Main – Complete (Including labor, materials and appurtenances, demolition, pump replacement, excavation, backfill, restoration, and testing)	1 LS	(\$210,000)
	Subtotal:	\$365,000
10%	Contingency:	\$35,000
Project	\$400,000	
Project Cost with Construction Cost Escalated Construe	~2% to 2022 ction Period:	\$410,000

Table 3.3 Alternate 'B' Bid*: Design of "Duplex Lift Stations - Engineer's Opinion of Probable Project Cost

QTY	Total Cost			
4 EA	(\$80,000)			
4 EA	\$340,000			
Subtotal:	\$260,000			
Contingency:	\$30,000			
Project Cost (2020):				
Project Cost with Construction Cost Escalated ~2% to 2022 Construction Period:				
	4 EA 4 EA Subtotal: Contingency: Cost (2020): ~2% to 2022			

*Alternate 'B' Bid: Provides additional station flexibility with having a spare pump

3.2 Current and Future Hydraulic Loads

The hydraulic loads of the new district are a critical component of design. As such the potential loads of the West Side Sewer Extension were carefully evaluated and will be incorporated into the final design. The West Side Sewer Extension will largely service new customers but will also include existing customers tributary to the Sunrise Cove Pumping Station as well as the future customers within Phase 2 of the West Side Sewer Extension. As a result, both existing and future demands will be factored into the final design.

In addition to the West Side Sewer Extension to improve phosphorus levels within Chautauqua Lake portions of the Hamlet of Ashville (Phase 3) will transferred to public sewers. The Hamlet of Ashville hydraulic loads are not directly tributary to the West Side Sewer Extension but are tributary to the Sherman's Bay Pumping Station. As mentioned previously, the Sherman's Bay Pumping Station is the collection point for the West Side Sewer Extension. Therefore, when evaluating the Sherman's Bay Pumping Station the future Hamlet of Ashville's hydraulic load should be considered.

3.2.1 Projected Demands

The estimated average day hydraulic load for new sewer customers in the West Side Sewer Extension were based on the number of currently developed parcels. Generally, developed parcels with single family residences/small users were projected to have an estimated hydraulic loading of 260 gpd. This hydraulic load was agreed upon and approved with acceptance of the 2015 Sewer Extension Report. The 260 gpd is a reasonable number based off two methods:

- The per capita hydraulic load is 100 gpd, in accordance with Ten State Standards, and the average house hold size of 2.61 people per dwelling unit (100 gpd * 2.61 = 261 gpd).
- The NYSDOH hydraulic flow rates for new construction is 110 gpd/bedroom. 2.4 bedrooms per household was assumed the sewer area (110 gpd/bedroom * 2.4 bedroom = 264).

As mentioned in Section 1.2, the population of the communities serviced by the WWTP has generally been in decline over the last nearly 50 years. However, it is still reasonable to project some population growth resulting from the installation of a public sewer system within the West Side Sewer Extension service area. The largest potential for growth would be anticipated along the Route 394 corridor near the Interstate 86/Route 17 exit ramp as there are large vacant parcels prime for residential subdivisions or commercial hotel developments. Based on the current dense population along the Chautauqua Lake shorelines, minimal growth is expected in those areas. Previous reports that have been accepted by regulating bodies estimated an aggressive growth rate of 2.5 percent per year over the next 20 years for a total population change of approximately 65 percent.

The total hydraulic load of the all phases of the West Side Sewer Extension is summarized in Tables 3.4, 3.5, and 3.6 which is based upon the data in Appendix A.

		Current		Future (20 years)			
Service Area	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	
Phase 1	420	109,440	404,929	690	180,000	666,720	
Sunrise Cove (Inclusive of BOCES School)	35	10,080	42,335	60	15,840	67,680	
Phase 2	466	122,400	440,640	763	198,720	715,680	
Total West Side Service Area	921	241,920	887,904	1,513	394,560	1,450,080	

Table 3.4 West Side Sewer Extension (Ph. 1 and 2) Hydraulic Load Projection

Table 3.5 Hamlet of Ashville (Phase 3) Hydraulic Load Projection

	Current			Future (20 years)			
Service Area	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	
Hamlet of Ashville (Phase 3)	100	27,360	112,176	165	43,200	177,120	

Table 3.6 Existing Service Area Hydraulic Load Projection

		Current		Future (20 years)			
Service Area	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	EDUs	Average Day Hydraulic Load (gpd)	Peak Hour Hydraulic Load (gpd)	
Goose Creek	330	86,400	319,680	544	141,120	522,720	
Sherman's Bay	390	102,240	378,288	644	167,040	619,200	
Lakewood	3,555	924,480	2,588,544	5,825	1,514,880	4,242,240	

3.3 Existing Pump Station Analysis

The existing conveyance facilities were evaluated during the development of the 2015 Sewer Extension Report. The evaluation conducted at the time of that report reviewed the West Side Sewer Extension discharging into the Goose Creek Pumping Station, which conveys flow to the Sherman's Bay Pumping Station via an 8-inch PVC force main which discharges into a 21-inch gravity sewer at the Sherman's Bay Pumping Station. The Sherman's Bay Pumping Station conveys flow the Lakewood Pumping Station via a 12-inch PVC force main which discharges into a 24-inch gravity sewer that increases to a 30-inch gravity sewer near the Lakewood Pumping Station. The Lakewood Pumping Station conveys flow to the WWTP via 20-inch DIP force main that discharges into a 30-inch gravity sewer known as the Celoron Interceptor that increases to a 36-inch gravity sewer as it connects with the Livingston Interceptor and the Bonita Pumping Station force main.

The 2015 Sewer Extension Report concluded that the existing gravity system did not require any improvements as these facilities had sufficient available capacity to convey the 20-year projected wastewater flows from the West Side Sewer Expansion (Phase 1 and 2) and the Hamlet of Ashville (Phase 3). No additional improvements were recommended and no additional evaluation was completed as part of this Design Report.

The 2015 Sewer Extension Report evaluated three pumping stations which included the Goose Creek, Sherman's Bay, and Lakewood Pumping Stations and concluded that additional investigations were required to determine the feasibility of these stations serving the new sewer expansion. This Design Report will review the Goose Creek, Sherman's Bay and Lakewood Pumping Stations for current and future pumping capacities.

3.3.1 Proposed Conveyance Requirements

To evaluate the Sherman's Bay and Lakewood Pumping Station the required West Side Sewer Extension including the Hamlet of Ashville hydraulic loads were evaluated. Section 3.2.1 of this Report details the projected hydraulic load of the proposed West Side Sewer Extension. The flows detailed in the tables within that Section are representative of a gravity collection system. Each of the three phases of the new sewers within the West Side Sewer Extension will be collected and transferred via a low pressure sewer system. Low pressure sewer system flows are evaluated with simultaneous grinder pump operations. Simultaneous operations determines the flow generated by grinder pumps that will run concurrently to prevent the oversizing of force mains and larger pumping stations. EPA recommended methods and guidelines were utilized to determine the approximate number of simultaneous pumps in operation.

The proposed conveyance requirements for the West Side Sewer Extension is summarized in Table 3.7 which is based upon the data in Appendix B. Note that the existing Sunrise Cove service area, which is part of the Phase 1, was evaluated separately as it is an existing gravity collection system and therefore simultaneous operation calculations would not apply. A pumping station will be required along Hadley Bay Road near Interstate 86 to collect flows from Phase 2, Stow, and Hadley Bay areas and boost system pressures to overcome a significant elevation increase along State Route 394 (SR 394) near Ramsey Road. The new Hadley Bay pumping station will also maintain adequate flow velocities within the force main to prevent buildup of solids which could potentially cause ongoing maintenance and operational issues. A pumping station will also be required at the south end of the Phase 1 service area to again boost system pressures to overcome a substantial

elevation increase along SR 394 between the existing Sunrise Cove Pumping Station and the Sherman's Bay Pumping Station.

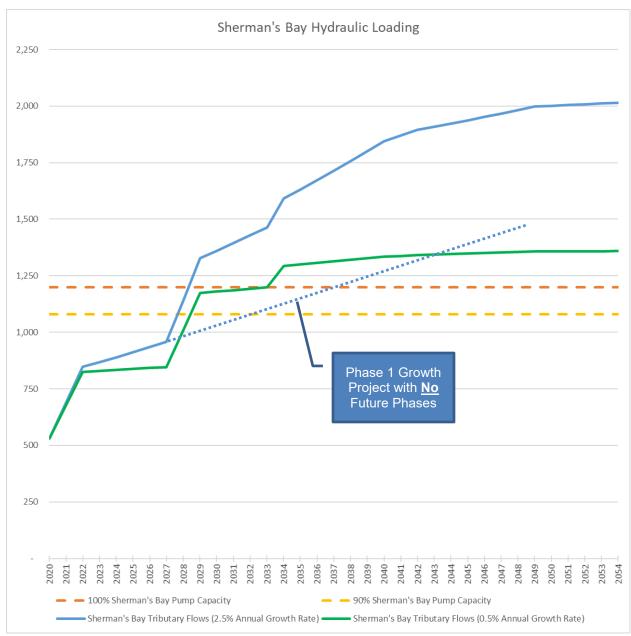
Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ start of Phase 3 (Year = 2034)	Future Flow (gpm) @ Phase 1, 20- year buildout (Year = 2041)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)	Future Flow (gpm) @ Phase 3, 20-year buildout (Year = 2053)
Phase 1	280	333	377	448	448	448
Sunrise Cove (Inclusive of BOCES School)	32	37	42	50	50	50
Phase 2	-	310	351	417	496	496
Phase 1 and 2 Subtotal	312	680	770	915	994	994
Hamlet of Ashville (Phase 3)	-	-	80	95	113	131
Total West Side Sewer Service Area	312	680	850	1,010	1,107	1,125

Table 3.7 West Side Sewer Extension Flow Projection

3.3.2 Existing Sherman's Bay Pumping Station

The Sherman's Bay Pumping Station, which was built in 1973, operates with two constant speed pumps with design points of 1,200 gpm at 117 feet of head. The total capacity of this station is approximately 1,200 gpd. The station conveys flow to the Lakewood Pumping Station via a 12-inch PVC force main which discharges into a 24-inch gravity sewer that increase to 30-inch gravity sewer near the Lakewood Pumping Station. The 12-inch PVC force main while maintaining pipeline velocities below 5 fps has the capacity to convey approximately 1,750 gpm and as velocities approach 6 fps the conveyance capacity increase to just over 2,100 gpm.

The current (includes West Side Sewer Extension full buildout) and 20-year peak hourly future conveyance requirements for the Sherman's Bay Pumping Stations are shown in Table 3.8.



Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ start of Phase 3 (Year = 2034)	Future Flow (gpm) @ Phase 1, 20-year buildout (Year = 2041)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)	Future Flow (gpm) @ Phase 3, 20-year buildout (Year = 2053)
Goose Creek Pumping Station	231	275	311	370	370	370
Sherman's Bay Service Area	273	325	367	437	437	437
West Side Sewer Service Area	312	680	850	1,010	1,107	1,125
Total Conveyance Requirement	816	1,280	1,528	1,817	1,914	1,932

Table 3.8 Sherman's Bay Pumping Station Inflow Projection

The projected capacity of the Sherman's Bay Pumping Station as the West Side Sewer Extension develops is shown in Figure 3.1, which was developed from the Projected Hydraulic Loading for Sherman's Bay Pumping Station calculation sheet found in Appendix B. This table also illustrates a 0.50% 20 year growth rate to provide an understanding of the effect growth rate has on the station evaluation. Note that the Sherman's Bay Pumping Station as currently configured has a capacity of 1,200 gpm.

Figure 3.1 Sherman's Bay Pumping Station Hydraulic Loading

The existing Sherman's Bay Pumping Station as currently configured has sufficient capacity to convey flows from the Phase 1 service area including approximately 15-years of growth at 2.5%. However, upon the Phase 2 service area flows entering the conveyance system, the Sherman's Bay Pumping Station would likely no longer have the required conveyance capacities if communities experience an aggressive 2.5% annual growth rate.

It is not recommended to upgrade the Sherman's Bay Pumping Station pumps at this time due to the projected timing of the Phase 2 project, and the unknown of what the actual growth rate of the communities will be. The station should be re-evaluated when the timing of Phase 2 is better known,

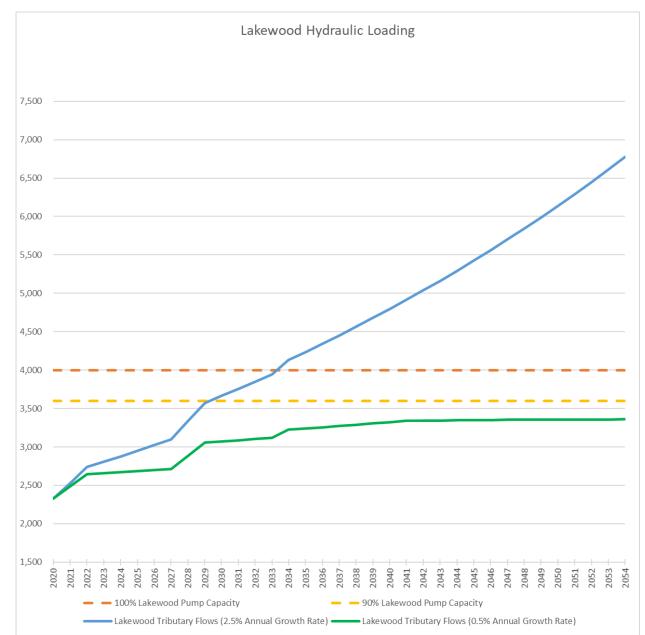
the actual community growth rates are known, when the station reaches approximately 90 percent capacity, or significant pump repairs or replacements are required.

The existing Sherman's Bay Pumping Station 12-inch PVC discharge force main has sufficient capacity to convey the full buildout of the West Side Sewer Extension (all three phases) while maintaining pipeline velocities below 5 fps. However, if the community experiences the aggressive 20-year growth of 65%, pipeline velocities would exceed 5 fps and approach 5.5 fps near the end of the growth period. A velocity of 5.5 fps is not considered excessive and should not be considered detrimental to the project.

At this time, it is not recommended to replace the Sherman's Bay Pumping Station 12-inch PVC discharge force main as it is expected to be a minimum of 15-years before all three phases of the West Side Sewer Extension are completed and it is unknown if a 20-year growth of 65% will ever be achieved. The discharge force main should be re-evaluated at the same time when the Sherman's Bay Pumping Station is next evaluated.

3.3.3 Existing Lakewood Pumping Station

The Lakewood Pumping Station, which also was built in 1973, operates with two variable-speed pumps with design points of 2,600 gpm at 64 feet of head and one constant-speed pump with a design point of 1,700 gpm at 40 feet of head. The total capacity of this station is approximately 4,000 gpd. The Lakewood Pumping Station conveys flow to the WWTP via 20-inch force main that discharges into a 30-inch gravity sewer known as the Celoron Interceptor that increases to a 36-inch gravity sewer as it connects with the Livingston Interceptor and the Bonita Pumping Station force main. The 20-inch force main while maintaining pipeline velocities below 5 fps has the capacity to convey approximately 4,900 gpm and as velocities approach 6 fps the conveyance capacity increase to just over 5,800 gpm.


The current (includes West Side Sewer Extension full buildout) and 20-year peak hourly future conveyance requirements for the Lakewood Pumping Stations are shown in Table 3.9

Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ start of Phase 3 (Year = 2034)	Future Flow (gpm) @ Phase 1, 20-year buildout (Year = 2041)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)	Future Flow (gpm) @ Phase 3, 20-year buildout (Year = 2053)
Sherman's Bay Pumping Station	816	1,280	1,528	1,817	1,914	1,932
Lakewood Service Area	1,891	2,248	2,543	3,023	3,023	3,023
Total Conveyance Requirement	2,707	3,528	4,071	4,840	4,937	4,955

Table 3.9 West Side Sewer Extension Flow Projection

The projected capacity of the Lakewood Pumping Station as the West Side Sewer Extension develops is shown in Figure 3.2, which was developed from the Projected Hydraulic Loading for Lakewood Pumping Station calculation sheet found in Appendix B. This Figure also illustrates a 0.50% 20 year growth rate to provide an understanding of the effect growth rate has on the station evaluation.

Figure 3.2 Lakewood Pumping Station Hydraulic Loading

The existing Lakewood Pumping Station as currently configured has sufficient capacity to convey flows from the Phase 1 service area including the entire 20-year 65% growth. The station also has sufficient capacity to accommodate the entire Phase 2 service area and approximately seven (7) years of the projected 20-year 65% growth.

It is not recommended to upgrade the Lakewood Bay Pumping Station pumps at this time due to the projected timing of the Phase 2 project, and the unknown of what the actual growth rate of the communities will be. The station should be re-evaluated when the timing of Phase 2 is better known, the actual community growth rates are known, when the station reaches approximately 90 percent capacity, or significant pump repairs or replacements are required.

At this time, it is not recommended to replace the Lakewood Pumping Station 20-inch DIP discharge force main as it is expected to be a minimum of 15-years before all three phases of the West Side Sewer Extension are completed and it is unknown if a 20-year growth of 65% will ever be achieved. The discharge force main should be re-evaluated at the same time when the Lakewood Pumping Station is next evaluated.

3.4 Transmission and Collection Design

The collection network for the proposed Phase 1 service area will include approximately 8.3 miles of new force mains consisting of 2-, 3-, 8-, and 10-inch diameter HDPE pipe. The transmission force main to convey flows from the Phase 1 service area will be comprised of approximately 2 miles of 10-inch HDPE pipe. The pipeline diameter was selected to provide a minimum velocity of at least 2 fps, not exceeding 5 fps, at a maximum design flow at least once per day. Mains will generally be installed in the ROW, preferably off to the side of pavement between the pavement's edge and other existing utilities. This placement will minimize disturbance to areas which have not been previously disturbed. The proposed pipeline will have a minimum bury depth of 4 feet within undeveloped areas and 5 feet within paved areas to prevent freezing during low flow periods. Figures 2.1 through 2.7 illustrate preliminary pipeline alignment and proposed pipeline diameters. Velocities within the pipelines were calculated and Hydraulic Grade Lines were developed which the results of the model can be found in Appendix E. To achieve the required flushing velocities for each pipeline to be utilized on this project, Table 3.10 illustrates the recommend flow ranges.

Pipeline Diameter (Nominal)	Flow Rate (gpm) to Produce a Pipeline Velocity of 2 fps	Flow Rate (gpm) to Produce a Pipeline Velocity of 5 fps
2-inch	~20	~50
3-inch	~45	~110
4-inch	~80	~195
6-inch	~180	~440
8-inch	~315	~785
10-inch	~490	~1,225

Table 3.10 Target Pipeline Velocities

*Note: Pipeline velocities for each nominal pipeline diameter will vary based on pipe class as the actual inside diameter of the pipeline changes with class.

The pipeline facilities will be accompanied by pipeline appurtenances to provide access as well as to minimize potential damage to the infrastructure. These appurtenances include isolation valves,

check valves, air/vacuum valves, and cleanouts. The location of these facilities will be determined during detailed design and will follow these minimum guidelines:

- Isolation Valves Isolation valves will be placed at the intersection of one collector to another, at each grinder pump location (lateral main), and at each cleanout location. Isolation valves will also be located if there are any flood hazard areas, with valves utilized to isolate such areas from the remainder of the collection system.
- Check Valves Check valves will be placed at each grinder pump location (lateral main).
- Air/Vacuum Valves Air/Vacuum valves will be placed at inflection points where liquid flow velocities are insufficient to purge air bubbles, generally at high points.
- Cleanouts Cleanouts will be provided at intervals of 500 and 1,000 feet, at major changes in direction, at the upstream side of the interconnection of one collector to another, and at the end of each force main. The cleanout shall be bi-directional, where applicable, so that cleaning can be completed in either direction.

3.5 Pumping Design

3.5.1 Grinder Pumping Stations

Existing private septic systems will be replaced with grinder pump stations. In order to minimize the number of individual grinder pumps, grinder pumps will be located so as to service two parcels as topography, distance, and available space allows. Grinder pumps will be located within existing public ROWs where feasible. In areas near the Lake where the public road ROW is substantially higher in elevation than the lakeside houses, it is not feasible to locate the grinder pumps in the ROW due to the fact that the private lateral connections to the grinder stations could be up to twenty-five feet deep. In these situations, the grinder pump stations will be located closer to the house(s) either to the side or between the house(s) and the Lake. These instances will require new permanent easements. To provide power for grinder pump stations, power drops will be requested from National Grid in strategic locations to enable multiple (3-5) grinder pump stations to be powered from a single power drop. Electrical meters will be located with existing road ROWs with conduit runs extending to grinder pumps through existing road ROW's and new permanent easements.

Grinder pumps and force main piping systems must be designed to achieve flushing velocities of 2 to 5 fps at least once a day. Grinder pump discharge laterals are typically 1-1/4 inches in diameter, and discharge to central force mains that generally are 2 inches or larger diameter.

The majority of proposed grinder stations will be simplex station (duplex stations for larger users, and duplex stations for intermediate booster stations to service each "branch" connection on SR 394) with a design flow rate of 25 gpm at 150 feet for centrifugal pump simplex stations. Actual performance curve for proposed centrifugal grinder pumps that can achieve the required range of flow and head are shown in Appendix F.

3.5.2 New Hadley Bay Pumping Station

The new Hadley Bay Pumping Station will be designed to convey the 20-year projected peak hourly flow for the customer's along Stow Road, Lakeland Road, Old Bridge Road, Watson Road, Ross Street, and Mason Street within Phase 1 and Phase 2 (current hydraulic demands plus 5 years at

2.5% growth) of the West Side Sewer Extension. The projected 20-year peak hourly flow established in Section 3.3.1 and summarized in Table 3.11 is 655 gpm.

Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ Phase 1, 20-year buildout (Year = 2042)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)
Phase 1 (Stow/Hadley Bay)	90	107	147	147
Phase 2	-	310	427	508
Phase 1 and 2 Total	90	417	574	655

 Table 3.11
 New Hadley Bay Pumping Station Flow Projection

To determine the required pump head, the elevation and dynamic head requirements were calculated. The elevation head was determined by comparing the approximate pump elevation and the highest elevation along the force main between the new Hadley Bay Pumping Station and the new SR 394 Pumping Station. The dynamic head is determined by calculating the head loss of the force main between the new Hadley Bay Pumping Station at the required flow rate. Table 3.12 shows the theoretical range of the pumping station requirements.

Flow Condition (gpm)	Pump Elevation (ft)	High Point (ft)	Elevation Change (ft)	Pipeline Length (ft)	C-Factor	Headloss (ft)	TDH (ft)
460	1,360	1,445	85	14,700	120	35	110
680	1,360	1,445	85	14,700	120	70	155

The pumping station will be designed with two centrifugal pumps, which will allow the pumps to be alternated as necessary and allow for maintenance and optimum performance. The targeted design point for the selected pump will be 680 gpm at 155 feet TDH. Actual performance curve for a centrifugal pump that can achieve the required range of flow and head are shown in Appendix F.

Initially, the anticipated operating range of the pumping station will be approximately 460 gpm at 110 feet of total dynamic head (TDH). To achieve this, the pumps must be installed with a smaller size impeller (200 mm for the preliminary pump selection, operating at approximately 58% pump efficiency). In the future, if all of the projected hydraulic loads materialize, the anticipated operating point will match the design point by upsizing to a larger impeller (230 mm for the preliminary pump

selection, operating at approximately 65% pump efficiency). The curves in Appendix F, show the operating point and operating curves for the recommended pumps.

The pumping station will be equipped with a SCADA system linked to the WWTP service center. This will allow remote operation of the pumping station in coordination with the various other pumping stations that influence its operation.

The pump station will be supplied by 3-phase power. For emergencies, the station will be equipped with a permanent natural gas fired backup generator and automatic transfer switch to allow the station to continue operation in event of power outages.

3.5.3 Sunrise Cove Pumping Station

The existing Sunrise Cove Pumping Station will retrofitted with a new submersible sewage pumps and 3-inch force main. The station modifications will be designed to convey the 20-year projected peak hourly flow for the existing Sunrise Cove service area excluding the BOCES School flow. The BOCES School flow will be redirected to discharge directly into the new SR 394 Pumping Station. The projected 20-year peak hourly flow established in Section 3.3.1 and summarized in Table 3.13 is 40 gpm.

Service Area	Current Flow (gpm)	Future (20 years) Flow (gpm)
Sunrise Cove	30	50
BOCES School (Deduction)	10	10
New Sunrise Cove Total	20	40

Table 3.13 Upgraded Sunrise Cove Pumping Station Flow Projection

To determine the required pump head, the elevation and dynamic head requirements were calculated. The elevation head was determined by comparing the approximate pump elevation and the highest elevation along the force main between the Sunrise Cove Pumping Station and the new SR 394 Pumping Station. The dynamic head is determined by calculating the headloss of the force main between the Sunrise Cove Pumping Station at the required flow rate. Table 3.14 shows the theoretical range of the pumping station requirements. Note, the station will be designed to pump future flow rates.

Table 3.14 Theoretical Range of Pump Head Requirements

Flow Condition (gpm)	Pump Elevation (ft)	High Point (ft)	Elevation Change (ft)	Pipeline Length (ft)	C-Factor	Headloss (ft)	TDH (ft)
20	1,290	1,385	95	1,400	120	5	100

Flow Condition (gpm)	Pump Elevation (ft)	High Point (ft)	Elevation Change (ft)	Pipeline Length (ft)	C-Factor	Headloss (ft)	TDH (ft)
40	1,290	1,385	95	1,400	120	70	165

Table 3.14 Theoretical Range of Pump Head Requirements

The pumping station will be designed with two grinder-cutter type centrifugal pumps, which will allow the pumps to be alternated as necessary and allow for maintenance and optimum performance. The targeted design point for the selected pump will be 40 gpm at 165 feet. Actual performance curve for a centrifugal pump that can achieve the required range of flow and head are shown in Appendix F.

The pumping station will be equipped with a SCADA system linked to the WWTP service center. This will allow remote operation of the pumping station in coordination with the various other pumping stations that influence its operation.

The pump station will be supplied by 3-phase power. For emergencies, the station will be equipment with an auxiliary generator receptacle and manual transfer switch to allow for a portable generator connection. The portable generator will be provided by SCCLSD as required for emergency events.

3.5.4 New SR 394 Pumping Stations

The new SR 394 Pumping Station will be design to convey the 20-year projected peak hourly flow for the West Side Sewer Extension (Phase 1, Phase 2, and Sunrise Cove). The projected 20-year peak hourly flow established in Section 3.3.1 and summarized in Table 3.15 is 1,000 gpm.

Service Area	Current Flow (gpm) @ end of Phase 1 (Year = 2022)	Future Flow (gpm) @ start of Phase 2 (Year = 2029)	Future Flow (gpm) @ Phase 1, 20-year buildout (Year = 2042)	Future Flow (gpm) @ Phase 2, 20-year buildout (Year = 2048)
Phase 1	280	333	448	448
Sunrise Cove (Inclusive of BOCES School)	32	37	50	50
Phase 2	-	310	417	496
Phase 1 and 2 Total	312	680	915	994

Table 3.15 New SR 394 Pumping Station Flow Projection

To determine the required pump head, the elevation and dynamic head requirements were calculated. The elevation head was determined by comparing the approximate pump elevation and

the highest elevation along the force main between the New SR 394 Pumping Station and the Sherman's Bay Pumping Station. The dynamic head is determined by calculating the head loss of the force main between the New SR 394 Pumping Station and the Sherman's Bay Pumping Station at the required flow rate. Table 3.16 shows the theoretical range of the pumping station requirements.

Flow Condition (gpm)	Pump Elevation (ft)	High Point (ft)	Elevation Change (ft)	Pipeline Length (ft)	C-Factor	Headloss (ft)	TDH (ft)
700*	1,380	1,450	70	10,350	120	75	145
700**	1,380	1,450	70	10,350	120	15	85
1,000	1,380	1,450	70	10,350	120	20	90

Table 3.16 Theoretical Range of Pump Head Requirements

*Base Bid (connection to Goose Creek Force Main)

** Base Bid with Alternate 'A' (new force main to Sherman's Bay PS)

To provide maximum operational flexibility and achieve a verity of flow ranges as the West Side Sewer Extension reaches full buildout, the station will be designed with a variable speed drive (VFD). The designed pump range is 700 gpm to 1,000 gpm (20-year full buildout) at a head range of 85 feet to 145 feet.

The pumping station will be designed with two centrifugal pumps, which will allow the pumps to be alternated as necessary and allow for maintenance and optimum performance. The targeted design point for the selected pump will be 1,000 gpm at 90 feet. Actual performance curve for a centrifugal pump that can achieve the required range of flow and head are shown in Appendix F.

Initially, the anticipated operating range of the pumping station will be approximately 700 gpm at 145 feet of total dynamic head (TDH) for the Base Bid or 700 gpm at 85 TDH for the Base Bid with force main alternate.

The pumping station will be equipped with a SCADA system linked to the WWTP service center. This will allow remote operation of the pumping station in coordination with the various other pumping stations that influence its operation.

The pump station will be supplied by 3-phase power. For emergencies, the station will be equipped with a permanent natural gas fired backup generator and automatic transfer switch to allow the station to continue operation in event of power outages.

The SCCLSD would like to approach the BOCES School to potentially purchase the proposed pumping station site. The site will be provided with an asphalt paved driveway for SCCLSD access, and an on-grade concrete slab for the emergency generator and automatic transfer switch.

3.5.5 Goose Creek Pumping Station

The existing Goose Creek Pumping Station will be retrofitted with new sewage pumps only under the Base Bid scenario. The station modifications will be designed to convey the 20-year projected peak hourly flow for the existing Goose Creek service area. The projected 20-year peak hourly flow established in Section 3.3.1 and summarized in Table 3.17 is 400 gpm.

Service Area	Current Flow (gpm)	Future (20 years) Flow (gpm)
Goose Creek	220	370

Table 3.17 Upgraded Goose Creek Pumping Station Flow Projection

To determine the required pump head, the elevation and dynamic head requirements were calculated along with the TDH required to operate simultaneous with the new SR 394 Pumping Station. The elevation head was determined by comparing the approximate pump elevation and the highest elevation along the force main between the Goose Creek Pumping Station and the Sherman's Bay Pumping Station. The dynamic head is determined by calculating the headloss of the force main between the Goose Creek Pumping Station and the Sherman's Bay Pumping Station and the Sherman's Bay Pumping Station are the Goose Creek Pumping Station and the Sherman's Bay Pumping Station are swell as the TDH from the new SR 394 Pumping Station at the required flow rate. Table 3.18 shows the theoretical range of the pumping station requirements. Note, the station will be designed to pump future flow rates.

	Table 3.18	Theoretical Ran	ge of Pump	Head Red	uirements
--	-------------------	------------------------	------------	----------	-----------

Flow Condition (gpm)	Pump Elevation (ft)	High Point (ft)	Elevation Change (ft)	Pipeline Length (ft)	C-Factor	Headloss (ft)	SR 394 THD (ft)	TDH (ft)
400	1,315	1,318	3	3,600	120	5	179	187

The pumping station will be designed with two grinder-cutter type centrifugal pumps, which will allow the pumps to be alternated as necessary and allow for maintenance and optimum performance. The targeted design point for the selected pump will be 400 gpm at 187 feet.

3.5.6 Sherman's Bay Stations

The Sherman's Bay Pumping Station is currently operating at approximately 45 percent of its capacity. The Sherman's Bay Pumping Station as currently configured has sufficient capacity to convey flows from the Phase 1 service area including approximately 15-years of growth at 2.5%. Upon the Phase 2 service area flows entering the conveyance system, the Sherman's Bay Pumping Station would likely no longer have the required conveyance capacities if communities experience an aggressive 2.5% annual growth rate.

If the Sherman's Bay Pumping Station service area (including new and existing service areas) experiences a less aggressive growth rate of approximately 0.5%, the station would reach 100% capacity approximately twelve (12) years after the completion of the Phase 1 sewer project.

It is not recommended to upgrade the Sherman's Bay Pumping Station pumps at this time due to the projected timing of the Phase 2 project, and the unknown of what the actual growth rate of the communities will be. The station should be re-evaluated when the timing of Phase 2 is better known, the actual community growth rates are known, when the station reaches approximately 90 percent capacity, or significant pump repairs or replacements are required.

3.5.7 Lakewood Pumping Stations

The Lakewood Pumping Station is currently operating at approximately 60 percent of its capacity. The Lakewood Pumping Station as currently configured has sufficient capacity to convey flows from the Phase 1 service area including the entire 20-year 65% growth. The station also has sufficient capacity to accommodate the entire Phase 2 service area and approximately seven (7) years of the projected 20-year 65% growth.

If the Lakewood Pumping Station service area (including new and existing service areas) experiences a less aggressive growth rate of approximately 0.5%, the station would have sufficient capacity to accommodate flows for an entire 20-year growth period, at which time it would operate at approximately 85% capacity.

It is not recommended to upgrade the Lakewood Bay Pumping Station pumps at this time due to the projected timing of the Phase 2 project, and the unknown of what the actual growth rate of the communities will be. The station should be re-evaluated when the timing of Phase 2 is better known, the actual community growth rates are known, when the station reaches approximately 90 percent capacity, or significant pump repairs or replacements are required.

Engineering Report Certification

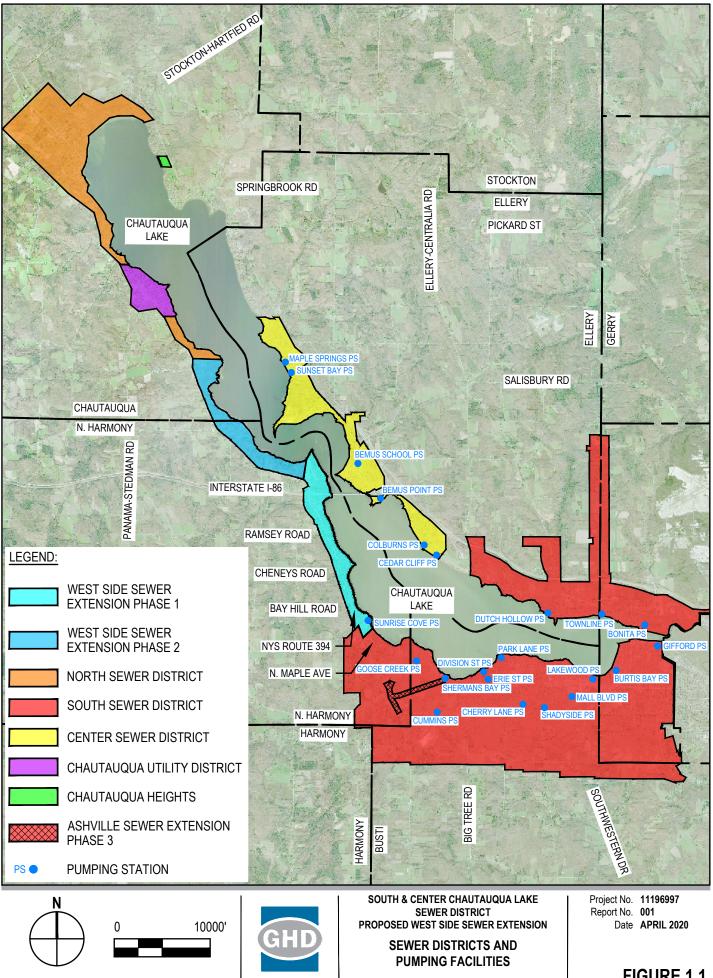
During the preparation of this Engineering Report, I have studied and evaluated the cost and effectiveness of the processes, materials, techniques, and technologies for carrying out the proposed project or activity for which assistance is being sought from the New York State Clean Water State Revolving Fund. In my professional opinion, I have recommended for selection, to the maximum extent practicable, a project or activity that maximizes the potential for efficient water use, reuse, recapture, and conservation, and energy conservation, taking into account the cost of constructing the project or activity, the cost of operating and maintaining the project or activity over the life of the project or activity, and the cost of replacing the project and activity.

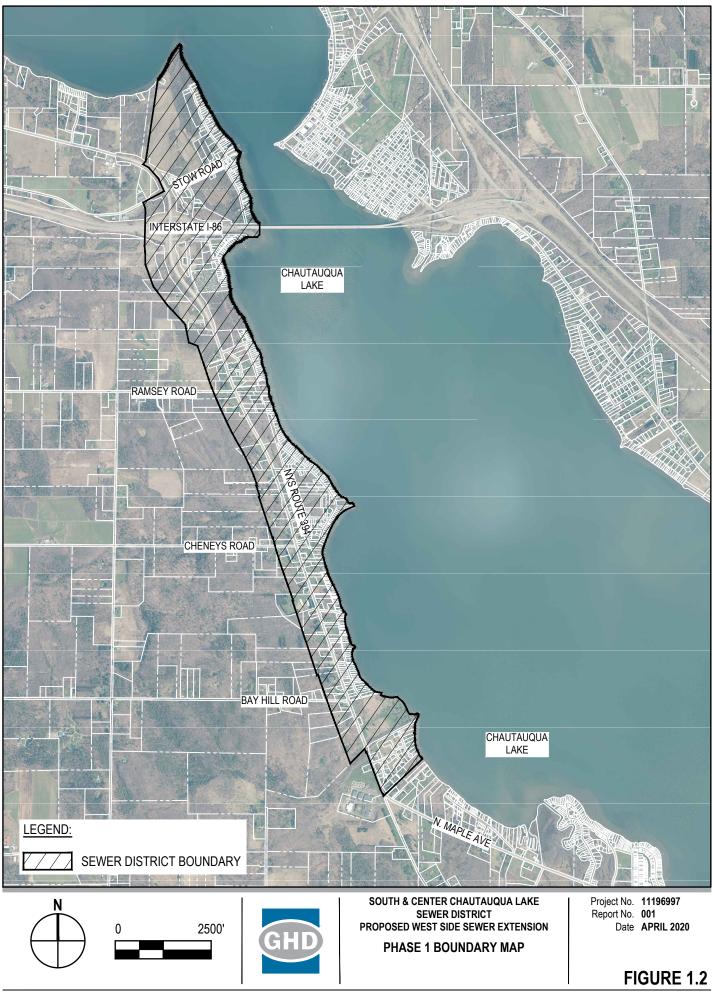
Title of Engineering Report: Design Report, West Side Sewer Extension Project

Date of Report: April 13, 2020

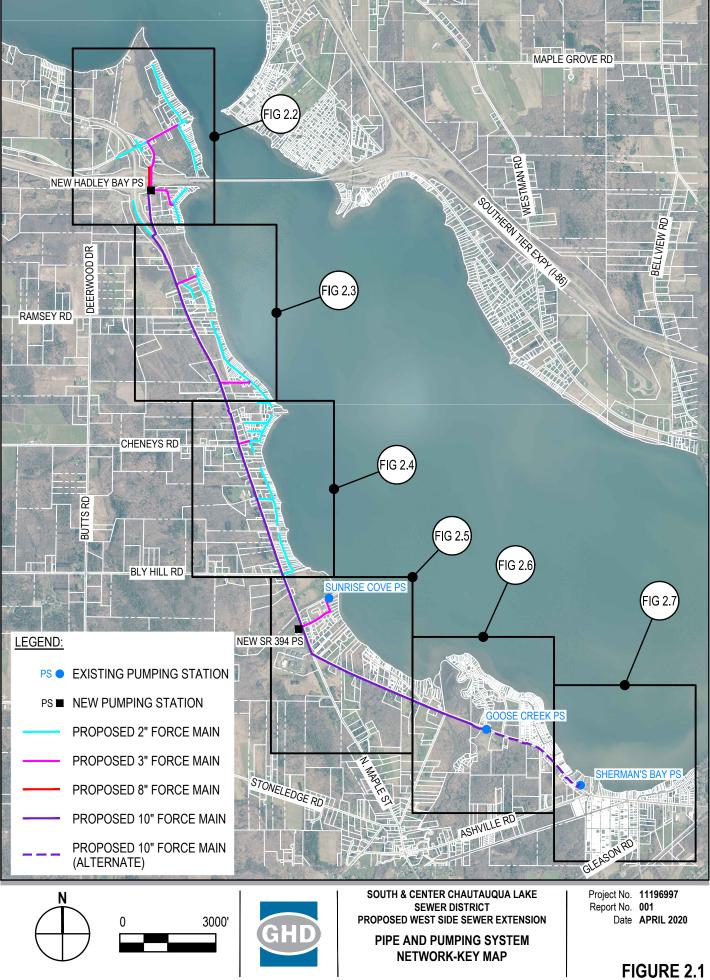
Professional Engineer's Name: Paul J. McGarvey, P.E.

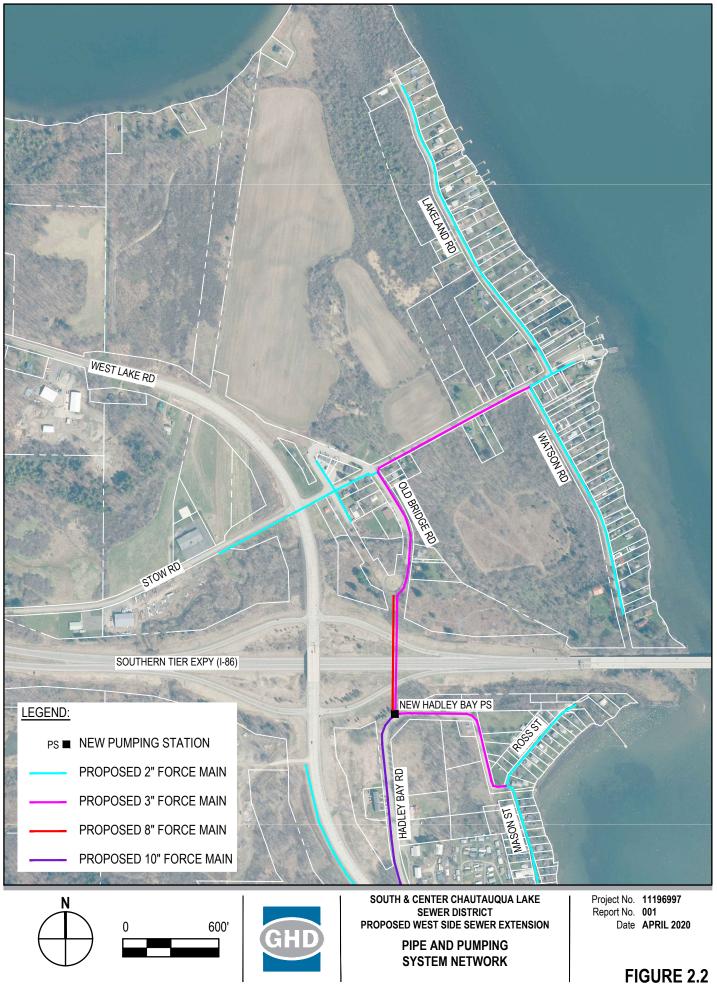
New York State Professional Engineer License Number: 073641

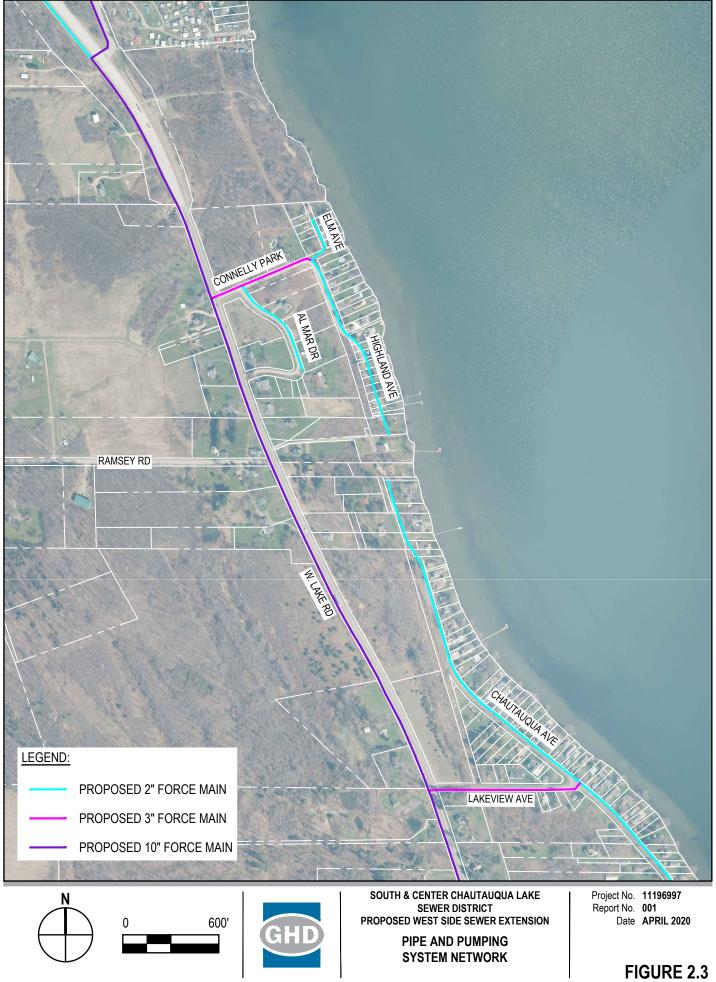

Signature: Hours M

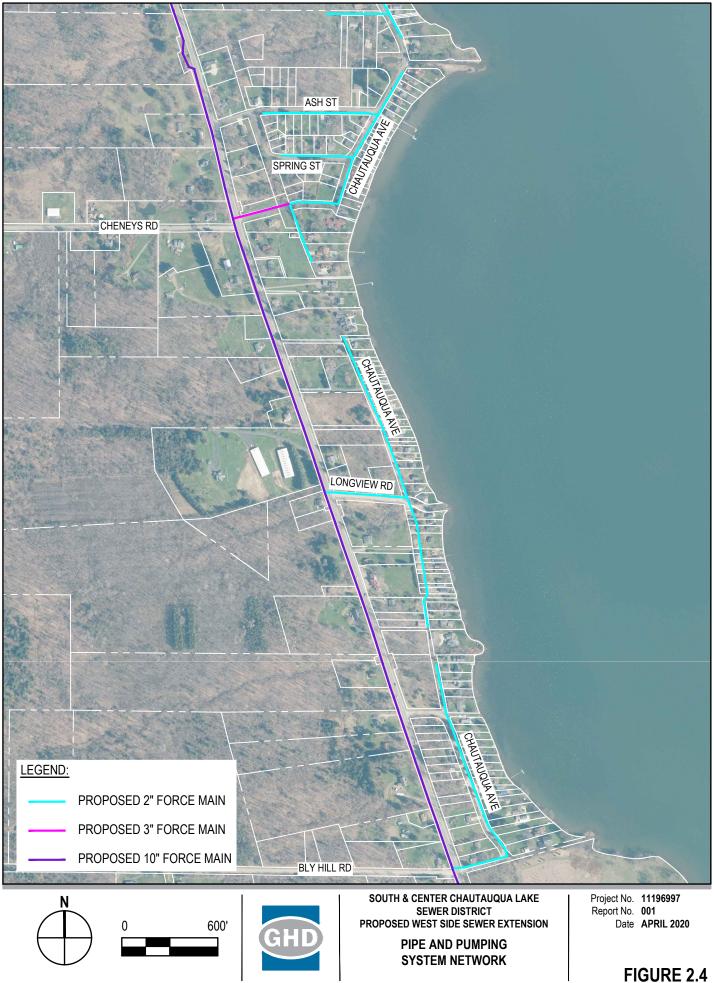

Date: <u>April 13, 2020</u>

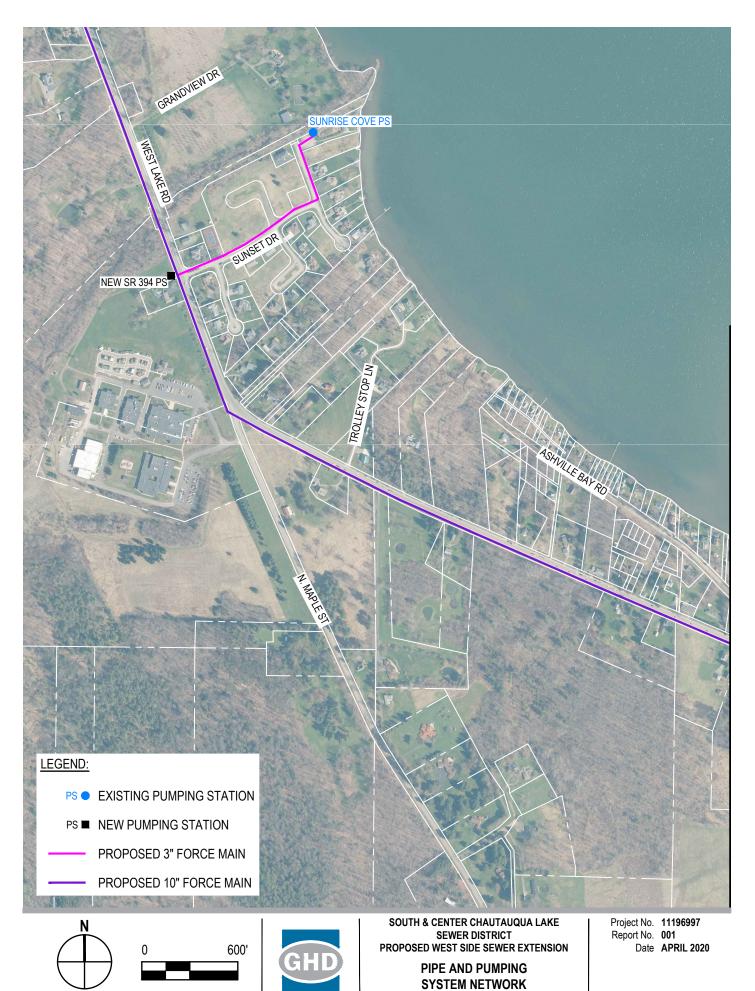
Figures


GHD | West Side Sewer Extension Design Report | 11196997 (1)

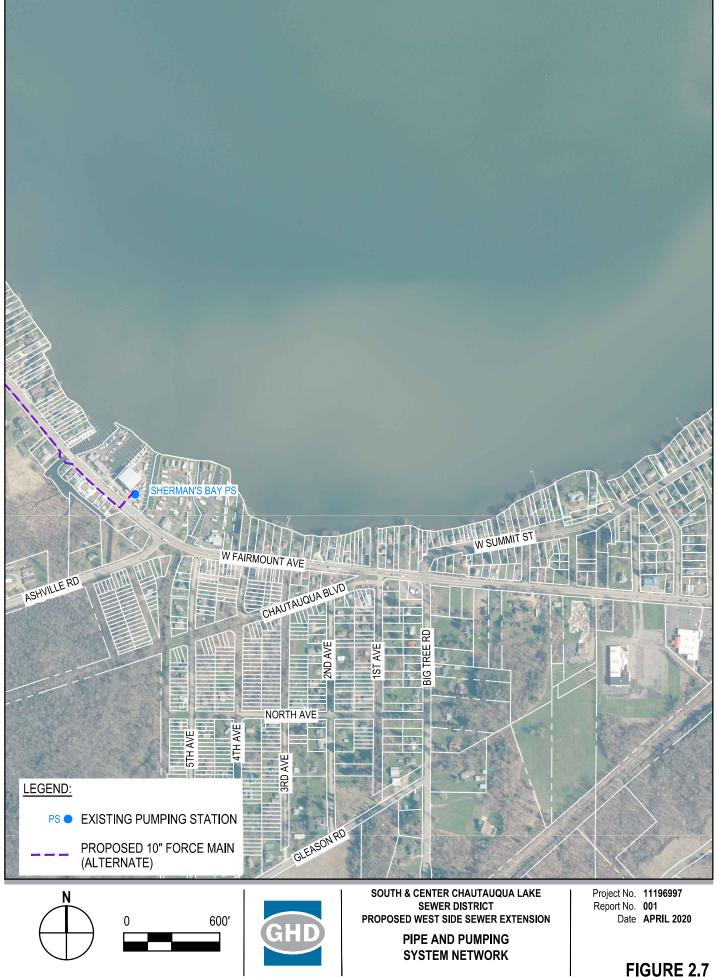

Filename: C:\Users\tdahmer\Desktop\ACAD 2018\Figures\Proposed Sewer Extension Figures\11196997-FIG1.1.dwg Plot Date: 8 April 2020 - 1:36 PM


Filename: C:\Users\tdahmer\Desktop\ACAD 2018\Figures\Proposed Sewer Extension Figures\11196997-FIG1.2.dwg Plot Date: 8 April 2020 - 1:36 PM


Filename: C:\Users\tdahmer\Desktop\ACAD 2018\Figures\Proposed Sewer Extension Figures\11196997-FIG2.1.dwg Plot Date: 8 April 2020 - 1:36 PM

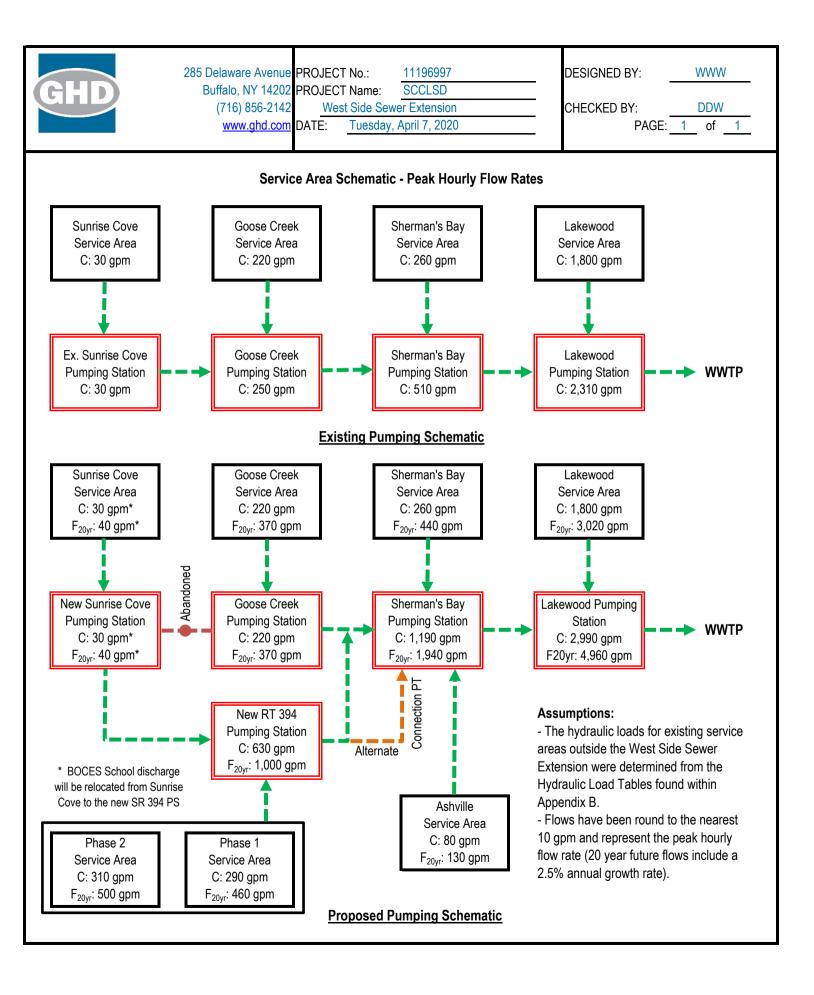

Filename: C:\UsersltdahmerlDesktop\ACAD 2018\Figures\Proposed Sewer Extension Figures\11196997-FIG2.2.dwg Plot Date: 8 April 2020 - 1:36 PM

Filename: C:UBerstktahmer/Desktop/ACAD 2018/Figures/Proposed Sewer Extension Figures/11196997-FIG2.3.dwg Plot Date: 8 April 2020 - 1:36 PM



Filename: C:UBerstktahmer/Desktop/ACAD 2018/Figures/Proposed Sewer Extension Figures/11196997-FIG2.4.dwg Plot Date: 8 April 2020 - 1:36 PM

Filename: C:UBerstktahmer/Desktop/ACAD 2018/Figures/Proposed Sewer Extension Figures/11196997-FIG2.5.dwg Plot Date: 8 April 2020 - 1:36 PM



Source

Appendices

Appendix A Flow Schematic

Appendix B Hydraulic Loads

285 Delaware Avenue PROJECT No.: 11196 Buffalo, NY 14202 PROJECT Name: SCCL (716) 856-2142 West Side Sewer External	SD CHECKED BY: DDW
www.ghd.com DATE: Tuesday, April 7,	2020 PAGE: <u>1</u> of <u>8</u>
Phase 1 Service Area - Hydrau	ic Load Projection
Assumptions: - Design will meet Ten States Standards - EDU Count was derived from Sections 6 of the Sewer Extension for West Sid EDU count equals Design Average Flow divided by average day hydaulic load 260 gpd / 1.65 = 233)	
P_H =Population/Household =2.6 P_{SA} =Equivalent Service Area Population P_G =Annual Growth Rate =2.5% P_T =Project 20yr Service Area Population	account for large users) 3 - Ten States Standards)
Q _A = Future Average Day Flow (gpm) Q _P = Future Peak Hourly Flow (gpm) Q _{PF} = Peaking Factor (Part 11.241, Figure 1 - Ten States Standard	s)
Calculation:	
P_{SA} = $D_P * P_H$ = 1,092 (rounded up)	
$P_{T} = P_{SA} * (1+P_{G})^{20} = 1,790$ (rounded up)	
$Q_{AC} = P_{SA} * HC / (24 hr/day) / (60 min/hr) = 76 (round$	led up) Q_{AC} (gpd)= 109,440
Q_A= PT * HC / (24 hr/day) / (60 min/hr) = 125 (rounded up	b) Q_A (gpd)= 180,000
\mathbf{Q}_{PF} = (18 + (P_{T} / 1000) ^{0.5}) / (4 + (P_{T} / 1000) ^{0.5}) = 3.7 (round	led up)
Q_P= Q_A * Q_{PF} = 463.0 <i>(rounded up)</i> Q_P (Ft³/s)= 1.03	0.002228 ft ³ per gal) Q_P (gpd)= 666,720

GHI	285 Delaware Avenue Buffalo, NY 14202 (716) 856-2142 www.ghd.com DATE: Tuesday, April 7, 2020	DESIGNED BY: WWW CHECKED BY: DDW PAGE: 2 of 8
	Sunrise Cove Service Area - Hydraulic Load Projection	
- EDU EDU co	ptions: In will meet Ten States Standards Count was derived from Sections 6 of the Sewer Extension for West Side Chautauqua Lake (Ju punt equals Design Average Flow divided by average day hydaulic load per EDU divided by the d / 1.65 = 233)	
$P_{H}=$ $P_{SA}=$ $P_{G}=$ $P_{T}=$ $H_{C}=$ $Q_{AC}=$ $Q_{A}=$ $Q_{P}=$	es: Developed Properties = 35 (EDU value utilized to account for large users) Population/Household = 2.6 Equivalent Service Area Population Annual Growth Rate = 2.5% Project 20yr Service Area Population Hydraulic Capacity (gal/capita/day) = 100 (Part 11.243 - Ten States Standard Current Average Day Flow (gpm) Future Average Day Flow (gpm) Future Peak Hourly Flow (gpm) Peaking Factor (Part 11.241, Figure 1 - Ten States Standards)	
Calcula	ation:	
P _{SA} =	$D_{P} * P_{H} = 91$ (rounded up)	
P _T =	$P_{SA} * (1+P_G)^{20} = 150$ (rounded up)	
Q _{AC} =	P _{SA} * HC / (24 hr/day) / (60 min/hr) = 7 (rounded up) Q _{AC} (gpc	d)= 10,080
Q _A =	PT * HC / (24 hr/day) / (60 min/hr) = 11 (rounded up) Q _A (gpd)=	15,840
Q _{PF} =	$(18 + (P_T / 1000)^{0.5}) / (4 + (P_T / 1000)^{0.5}) = 4.2$ (rounded up)	
Q _P =	$Q_A * Q_{PF} = 47.0$ (rounded up) $Q_P (Ft^3/s) = 0.10$ (0.002228 ft ³ per gal)	Q _P (gpd)= 67,680

285 Delaware Avenue PROJECT No.: 11196997	DESIGNED BY:	WWW
Buffalo, NY 14202 PROJECT Name: SCCLSD		
(716) 856-2142 West Side Sewer Extension	CHECKED BY:	DDW
www.ghd.com DATE: Tuesday, April 7, 2020	PAGE:	3 of 8

Sunrise Cove Service Area (Post Phase 1 Buildout) - Hydraulic Load Projection

Assumptions:

- Design will meet Ten States Standards

- EDU Count was derived from Sections 6 of the Sewer Extension for West Side Chautauqua Lake (July 2015) developed by O'Brien & Gere. EDU count equals Design Average Flow divided by average day hydaulic load per EDU divided by the 20 year growth rate (i.e.: 100,000 gpd / 260 gpd / 1.65 = 233)

Variables:

D _{P=}	Developed Properties =	27	(EDU valu	le utilized	to account fo	or large users)									
P _H =	Population/Household =	2.6													
P _{SA} =	Equivalent Service Area Population														
P _G =	Annual Growth Rate = 2.5%														
P _T =	Project 20yr Service Area Population														
H _C =	Hydraulic Capacity (gal/capita/day) = 100 (Part 11.243 - Ten States Standards)														
Q _{AC} =															
Q _A =	Future Average Day Flow (gpm)														
Q _P =	Future Peak Hourly Flow (gpm)														
Q_{PF} =	Peaking Factor (Part	11.241, Figu	ıre 1 - Ten Sta	tes Stand	ards)										
Calcu	lation:														
P _{SA} =	$D_P * P_H = 71$ (rour	ded up)													
P _T =	$P_{SA} * (1+P_G)^{20} = 117$	(rounded up)												
Q _{AC} =	P _{SA} * HC / (24 hr/day) / (60 r	min/hr) =		5 (ro	unded up)	Q _{AC} (gpd)=	7,200								
Q _A =	PT * HC / (24 hr/day) / (60 n	nin/hr) =	9	(rounde	d up)	Q _A (gpd)= 12	2,960								
Q _{PF} =	(18 + (P _T / 1000) ^{0.5}) / (4 + (P	r / 1000) ^{0.5})	= 2	4.3 (ro	unded up)										
Q _P =	Q _A * Q _{PF} = 39.0 (rour	ided up)	Q _P (Ft ³ /s)=	• 0.09	(0.002228	8 ft ³ per gal)	Q _P (gpd)=	56,160							

285 Delaware Avenue Buffalo, NY 14202PROJECT No.:11196997ROJECT Name:SCCLSD(716) 856-2142West Side Sewer Extensionwww.ghd.comDATE:Tuesday, April 7, 2020	DESIGNED BY: WWW CHECKED BY: DDW PAGE: 4 of 8
Phase 2 Service Area - Hydraulic Load Projection	
Assumptions: - Design will meet Ten States Standards - EDU Count was derived from Sections 6 of the Sewer Extension for West Side Chautauqua Lake EDU count equals Design Average Flow divided by average day hydaulic load per EDU divided by t 260 gpd / 1.65 = 233)	
Variables: $D_{P=}$ Developed Properties =466(EDU value utilized to account for large user P_{H} =Population/Household =2.6	rs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ards)
Calculation:	
P_{SA} = $D_P * P_H$ = 1,212 (rounded up)	
$P_{T} = P_{SA} * (1+P_{G})^{20} = 1,987$ (rounded up)	
$Q_{AC} = P_{SA} * HC / (24 hr/day) / (60 min/hr) = 85 (rounded up) Q_{AC} (g$	jpd)= 122,400
Q_{A} = PT * HC / (24 hr/day) / (60 min/hr) = 138 (rounded up) Q_{A} (gpd)=	198,720
\mathbf{Q}_{PF} = (18 + (P_{T} / 1000) ^{0.5}) / (4 + (P_{T} / 1000) ^{0.5}) = 3.6 (rounded up)	
$\mathbf{Q}_{\mathbf{P}} = \mathbf{Q}_{\mathbf{A}} * \mathbf{Q}_{\mathbf{PF}} = 497.0$ (rounded up) $\mathbf{Q}_{\mathbf{P}} (\mathbf{Ft}^3/\mathbf{s}) = 1.11$ (0.002228 ft ³ per gal) Q_P (gpd)= 715,680

		-				
			11196997	ſ		
GH	285 Delaware Aven Buffalo NY 142	2 PROJECT No.:	SCCLSD	L	DESIGNED BY:	WWW
	(716) 856-21		ewer Extension		CHECKED BY:	DDW
	www.ghd.co		y, April 7, 2020		PAGI	
	Hamle	of Ashville Service	Area - Hydraulic I	Load Projection		
- Desi - EDU EDU c	nptions: ign will meet Ten States Standards I Count was derived from Sections 6 of th rount equals Design Average Flow divide od / 1.65 = 233)				· · ·	
Variat	oles:					
D _{P=}	Developed Properties = 100	(EDU value u	tilized to account fo	or large users)		
P _H =	Population/Household = 2.6					
P _{SA} =	Equivalent Service Area Population	_				
P _G =	Annual Growth Rate = 2.5%					
P _T =	Project 20yr Service Area Populatic					
H _c =	Hydraulic Capacity (gal/capita/day)	= 100 (F	Part 11.243 - Ten Si	tates Standards)		
Q _{AC} = Q _A =	Current Average Day Flow (gpm) Future Average Day Flow (gpm)					
Q _A = Q _P =	Future Peak Hourly Flow (gpm)					
Q _{PF} =		Figure 1 - Ten States	Standards)			
			olandalaoj			
Calcu	lation:					
P _{SA} =	$D_{P} * P_{H} = 260$ (rounded up)					
P _T =	$P_{SA} * (1+P_G)^{20} = 427$ (rounde	d up)				
Q _{AC} =	P _{SA} * HC / (24 hr/day) / (60 min/hr) =	= 19	(rounded up)	Q _{AC} (gpd)=	27,360	
Q _A =	PT * HC / (24 hr/day) / (60 min/hr) =	30 (n	ounded up)	Q_A (gpd)= 43	3,200	
Q _{PF} =	$(18 + (P_T / 1000)^{0.5}) / (4 + (P_T / 1000)^{0.5})$) ^{0.5}) = 4.1	(rounded up)			
Q _P =	$Q_A * Q_{PF} = 123.0$ (rounded up)	Q _P (Ft ³ /s)=	0.27 (0.002228	8 ft ³ per gal)	Q _P (gpd)=	177,120

285 Delaware Avenue PROJECT No.: 11196997	DESIGNED BY: WWW
Buffalo, NY 14202 PROJECT Name: SCCLSD	
(716) 856-2142 West Side Sewer Extension	CHECKED BY: DDW
www.ghd.com DATE: Tuesday, April 7, 2020	PAGE: 6 of 8
Goose Creek Service Area - Hydraulic Load Projection	
Assumptions:	
- Design will meet Ten States Standards	
- EDU Count was derived from Sections 6 of the Sewer Extension for West Side Chautauqua Lake (Ju	
EDU count equals Design Average Flow divided by average day hydaulic load per EDU divided by the	20 year growth rate (i.e.: 100,000 gpd /
260 gpd / 1.65 = 233)	
Variables:	
$D_{P=}$ Developed Properties = 330 (EDU value utilized to account for large users)	
P_{H} = Population/Household = 2.6	
P _{SA} = Equivalent Service Area Population	
P _G = Annual Growth Rate = 2.5%	
P _T = Project 20yr Service Area Population H _C = Hydraulic Capacity (gal/capita/day) = 100 (Part 11.243 - Ten States Standards	
Q_{AC} = Current Average Day Flow (gpm)	5)
Q _A = Future Average Day Flow (gpm)	
Q_{p} = Future Peak Hourly Flow (gpm)	
Q _{PF} = Peaking Factor (Part 11.241, Figure 1 - Ten States Standards)	
Calculation:	
P_{SA} = $D_P * P_H$ = 858 (rounded up)	
$P_{T} = P_{SA} * (1+P_{G})^{20} = 1,406$ (rounded up)	
0 = 0 $(10 / (24 hz/dz)) / (20 miz/hz) = 0.0 (1 / (1 / (2 / (2 / (2 / (2 / (2 / (2$	N- 00 400
$Q_{AC} = P_{SA} * HC / (24 hr/day) / (60 min/hr) = 60 (rounded up) Q_{AC} (gpd$	I)= 86,400
Q _A = PT * HC / (24 hr/day) / (60 min/hr) = 98 (rounded up) Q _A (gpd)=	1/1 120
$\mathbf{w}_{\mathbf{A}}$ = 1 1 10 / (24 11/0 dy) / (00 1111/11) = 30 (1001000 up) $\mathbf{w}_{\mathbf{A}}$ (gpd)-	171,120
\mathbf{Q}_{PF} = (18 + (\mathbf{P}_{T} / 1000) ^{0.5}) / (4 + (\mathbf{P}_{T} / 1000) ^{0.5}) = 3.7 (rounded up)	
$\mathbf{Q}_{P} = \mathbf{Q}_{A} * \mathbf{Q}_{PF} = 363.0$ (rounded up) $\mathbf{Q}_{P} (\mathbf{Ft}^{3}/\mathbf{s}) = 0.81$ (0.002228 ft ³ per gal)	Q _P (gpd)= 522,720

	285 Delaware Avenue		11196997		DESIGNED BY:	WWW
GH	Buffalo, NY 14202		SCCLSD		DESIGNED BY:	
	(716) 856-2142	West Side Ser			CHECKED BY:	DDW
	www.ghd.com		r, April 7, 2020		PAGE	
			<u>, , , , , , , , , , , , , , , , , , , </u>			
	Sherma	n's Bay Service Ar	ea - Hydraulic Loa	d Projection		
Assur	nptions:					
	gn will meet Ten States Standards					
	Count was derived from Sections 6 of the S					
	ount equals Design Average Flow divided b d / 1.65 = 233)	y average day nyda	ulic load per EDU d	iivided by the 20 j	year growth rate (i.e.	.: 100,000 gpa /
200 91						
Variat	les					
D _{P=}	Developed Properties = 390	(EDU value ut	ilized to account for	· large users)		
P _H =	Population/Household = 2.6					
P _{SA} =	Equivalent Service Area Population					
P _G =	Annual Growth Rate = 2.5%					
P _T =	Project 20yr Service Area Population					
H _C =	Hydraulic Capacity (gal/capita/day) =	100 (Pa	art 11.243 - Ten Sta	ates Standards)		
Q _{AC} =	Current Average Day Flow (gpm)					
Q _A =	Future Average Day Flow (gpm)					
Q _P = Q _{PF} =	Future Peak Hourly Flow (gpm) Peaking Factor (Part 11.241, Fig	ure 1 - Ten States S	Standards)			
αp _F -			stanuarusj			
Calcu	ation:					
P _{SA} =	$D_P * P_H = 1,014$ (rounded up)					
P _T =	$P_{SA} * (1+P_G)^{20} = 1,662$ (rounded u	p)				
0=	P _{SA} * HC / (24 hr/day) / (60 min/hr) =	71	(rounded up)	0(apd)=	102 240	
≪AC ^{−−}		7 1	(rounded up)	æ _{AC} (gpu)-	102,240	
Q _A =	PT * HC / (24 hr/day) / (60 min/hr) =	116 (ro	unded up)	Q₄ (gpd)= 16	67,040	
		,	.,			
Q _{PF} =	$(18 + (P_T / 1000)^{0.5}) / (4 + (P_T / 1000)^{0.5})$) = 3.7	(rounded up)			
_	• • •	<u>^</u>		0		
Q _P =	$Q_A * Q_{PF} = 430.0$ (rounded up)	Q _P (Ft³/s)=	0.96 (0.0022281	ft ³ per gal)	Q _P (gpd)=	619,200

285 Delaware Avenue Buffalo, NY 14202 (716) 856-2142PROJECT No.:11196997 SCCLSD West Side Sewer Extension	DESIGNED BY: WWW CHECKED BY: DDW
www.ghd.com DATE: Tuesday, April 7, 2020	PAGE: 8 of 8
Lakewood Service Area - Hydraulic Load Proj	ection
Assumptions: - Design will meet Ten States Standards - EDU Count was derived from Sections 6 of the Sewer Extension for West Side Chautauqua EDU count equals Design Average Flow divided by average day hydaulic load per EDU divide 260 gpd / 1.65 = 233)	
Variables: $D_{P^{\pm}}$ Developed Properties =3,555(EDU value utilized to account for large P_H = $P_{H^{\pm}}$ Population/Household =2.6 P_{SA}^{\pm} Equivalent Service Area Population P_{G}^{\pm} Annual Growth Rate =2.5% $P_{T^{\pm}}$ Project 20yr Service Area Population $H_{C^{\pm}}$ Hydraulic Capacity (gal/capita/day) =100 $Q_{AC^{\pm}}$ Current Average Day Flow (gpm) $Q_{A^{\pm}}$ Future Average Day Flow (gpm) $Q_{P^{\mp}}$ Peaking Factor(Part 11.241, Figure 1 - Ten States Standards)	
Calculation:	
P_{SA} = $D_{P} * P_{H}$ = 9,243 (rounded up)	
$P_{T} = P_{SA} * (1+P_{G})^{20} = 15,146$ (rounded up)	
Q_{AC}= P _{SA} * HC / (24 hr/day) / (60 min/hr) = 642 <i>(rounded up)</i>	Q_{AC} (gpd)= 924,480
Q _A = PT * HC / (24 hr/day) / (60 min/hr) = 1052 <i>(rounded up)</i> Q _A (gpd)= 1,514,880
\mathbf{Q}_{PF} = (18 + (P_{T} / 1000) ^{0.5}) / (4 + (P_{T} / 1000) ^{0.5}) = 2.8 (rounded up)	
$Q_{P} = Q_{A} * Q_{PF} = 2946.0$ (rounded up) $Q_{P} (Ft^{3}/s) = 6.56$ (0.002228 ft ³ µ	per gal) Q _P (gpd)= 4,242,240

285 Delaware Avenue Buffalo, NY 14202 (716) 856-2142 <u>www.ghd.com</u>

Projected Hydraulic Loading for Lakewood Pumping Station

Assumptions:

- Existing pumping capacity of the Lakewood Pumping Station is approximately 4,000 gpm.

2.5%

0.5%

- The construction of the West Side Sewer Extension phases are 7 years apart to allow for EFC funding eligibility; Map, Plan, and Report; funding application; detailed design; and bidding.

New Service Area Annual G	Growth Rate:
---------------------------	--------------

Existing Service Area Growth Rate:

2.5%

Service Area		Projected Peak Hourly Flow (gpm) - 20 Year Period at 2.5% Annual Growth From the Start of Phse Construction																						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2048	2054
Lakewood	1,800	1,845	1,891	1,938	1,987	2,037	2,087	2,140	2,193	2,248	2,304	2,362	2,421	2,481	2,543	2,607	2,672	2,739	2,807	2,878	2,950	3,023	3,023	3,023
Sherman's Bay	260	267	273	280	287	294	302	309	317	325	333	341	350	358	367	377	386	396	406	416	426	437	437	437
Goose Creek	220	226	231	237	243	249	255	262	268	275	282	289	296	303	311	319	327	335	343	352	360	370	370	370
Sunrise Cove	30	31	32	32	33	34	35	36	37	37	38	39	40	41	42	43	45	46	47	48	49	50	50	50
Phase 1		140	280	287	294	302	309	317	325	333	341	350	358	367	377	386	396	406	416	426	437	448	448	448
Phase 2									155	310	318	326	334	342	351	360	368	378	387	397	407	417	496	496
Phase 3															80	82	84	86	88	91	93	95	113	131
Projected Lakewood PS Flow	2,310	2,508	2,707	2,775	2,844	2,915	2,988	3,063	3,294	3,528	3,616	3,706	3,799	3,894	4,071	4,173	4,277	4,384	4,494	4,606	4,721	4,839	4,936	4,954
% Capacity of Lakewood PS	58%	63%	68%	69%	71%	73%	75%	77%	82%	88%	90%	93%	95%	97%	102%	104%	107%	110%	112%	115%	118%	121%	123%	124%

New Service Area Annual Growth Rate:

Existing Service Area Growth Rate:

Service Area	Projected Peak Hourly Flow (gpm) - 20 Year Period at 0.5% Annual Growth From the Start of Phse Construction																							
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2048	2054
Lakewood	1,800	1,809	1,818	1,827	1,836	1,845	1,855	1,864	1,873	1,883	1,892	1,902	1,911	1,921	1,930	1,940	1,950	1,959	1,969	1,979	1,989	1,999	1,999	1,999
Sherman's Bay	260	261	263	264	265	267	268	269	271	272	273	275	276	277	279	280	282	283	284	286	287	289	289	289
Goose Creek	220	221	222	223	224	226	227	228	229	230	231	232	234	235	236	237	238	239	241	242	243	244	244	244
Sunrise Cove	30	30	30	30	31	31	31	31	31	31	32	32	32	32	32	32	32	33	33	33	33	33	33	33
Phase 1		140	280	281	283	284	286	287	289	290	291	293	294	296	297	299	300	302	303	305	306	308	308	308
Phase 2									155	310	312	313	315	316	318	319	321	323	324	326	327	329	341	341
Phase 3															80	80	81	81	82	82	82	83	86	88
Projected Lakewood PS Flow	2,310	2,462	2,613	2,626	2,639	2,653	2,666	2,679	2,848	3,016	3,031	3,046	3,061	3,077	3,172	3,188	3,204	3,220	3,236	3,252	3,269	3,285	3,300	3,302
% Capacity of Lakewood PS	58%	62%	65%	66%	66%	66%	67%	67%	71%	75%	76%	76%	77%	77%	79%	80%	80%	80%	81%	81%	82%	82%	82%	83%

11196997	DESIGNED BY:	WWW
SCCLSD	-	
Sewer Extension	CHECKED BY:	DDW
ay, April 7, 2020	PAGE:	1 of 4

285 Delaware Avenue Buffalo, NY 14202 (716) 856-2142 <u>www.ghd.com</u>

Projected Hydraulic Loading for Sherman's Bay Pumping Station

Assumptions:

- Existing pumping capacity of the Sherman's Bay Pumping Station is approximately 1,200 gpm.

2.5%

- The construction of the West Side Sewer Extension phases are 7 years apart to allow for EFC funding eligibility; Map, Plan, and Report; funding application; detailed design; and bidding.

Existing Service Area Growth Rate:

2.5%

Service Area							Pro	jected Pea	k Hourly F	low (gpm)	- 20 Year F	Period at 2.	5% Annua	l Growth F	rom the St	art of Phse	e Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2048	2054
Sherman's Bay	260	267	273	280	287	294	302	309	317	325	333	341	350	358	367	377	386	396	406	416	426	437	437	437
Goose Creek	220	226	231	237	243	249	255	262	268	275	282	289	296	303	311	319	327	335	343	352	360	370	370	370
Sunrise Cove	30	31	32	32	33	34	35	36	37	37	38	39	40	41	42	43	45	46	47	48	49	50	50	50
Phase 1		140	280	287	294	302	309	317	325	333	341	350	358	367	377	386	396	406	416	426	437	448	448	448
Phase 2									155	310	318	326	334	342	351	360	368	378	387	397	407	417	496	496
Phase 3															80	82	84	86	88	91	93	95	113	131
Proj. Sherman's Bay PS Flow	510	663	816	836	857	879	901	923	1,101	1,280	1,312	1,345	1,378	1,413	1,528	1,566	1,605	1,645	1,687	1,729	1,772	1,816	1,913	1,931
% Capacity of Sherman's Bay PS	43%	55%	68%	70%	71%	73%	75%	77%	92%	107%	109%	112%	115%	118%	127%	131%	134%	137%	141%	144%	148%	151%	159%	161%

New Service Area Annual Growth Rate:

0.5% Existing Service Area Growth Rate:

Service Area							Pro	iected Pea	k Hourly F	low (gpm)	- 20 Year F	Period at 0.	5% Annua	l Growth F	rom the St	art of Phse	Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2048	2054
Sherman's Bay	260	261	263	264	265	267	268	269	271	272	273	275	276	277	279	280	282	283	284	286	287	289	289	289
Goose Creek	220	221	222	223	224	226	227	228	229	230	231	232	234	235	236	237	238	239	241	242	243	244	244	244
Sunrise Cove	30	30	30	30	31	31	31	31	31	31	32	32	32	32	32	32	32	33	33	33	33	33	33	33
Phase 1		140	280	281	283	284	286	287	289	290	291	293	294	296	297	299	300	302	303	305	306	308	308	308
Phase 2									155	310	312	313	315	316	318	319	321	323	324	326	327	329	341	341
Phase 3															80	80	81	81	82	82	82	83	86	88
Proj. Sherman's Bay PS Flow	510	653	795	799	803	807	811	815	974	1,133	1,139	1,145	1,150	1,156	1,242	1,248	1,254	1,261	1,267	1,273	1,280	1,286	1,301	1,304
% Capacity of Sherman's Bay PS	43%	54%	66%	67%	67%	67%	68%	68%	81%	94%	95%	95%	96%	96%	103%	104%	105%	105%	106%	106%	107%	107%	108%	109%

11196997	DESIGNED BY:	WWW
SCCLSD	-	
Sewer Extension	CHECKED BY:	DDW
ay, April 7, 2020	PAGE:	2 of 4
	-	

Projected Hydraulic Loading for SR 394 Pumping Station

Assumptions:

- Proposed pumping capacity of the SR 394 Pumping Station is approximately 1,030 gpm.

2.5%

- The construction of the West Side Sewer Extension phases are 7 years apart to allow for EFC funding eligibility; Map, Plan, and Report; funding application; detailed design; and bidding.

New Service Area Annual Growth Rate:	
--------------------------------------	--

Existing Service Area Growth Rate:

2.5%

Service Area							Pro	jected Pea	k Hourly F	low (gpm)	- 20 Year F	Period at 2.	5% Annua	l Growth F	rom the St	art of Phse	e Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2048
Sunrise Cove	30	31	32	32	33	34	35	36	37	37	38	39	40	41	42	43	45	46	47	48	49	50	50	50
Phase 1		140	280	287	294	302	309	317	325	333	341	350	358	367	377	386	396	406	416	426	437	448	448	448
Phase 2									155	310	318	326	334	342	351	360	368	378	387	397	407	417	496	496
Projected SR 394 PS Flow	30	171	312	319	327	335	344	352	516	680	697	715	733	751	770	789	809	829	850	871	893	915	994	994
% Capacity of SR 394 PS	3%	17%	30%	31%	32%	33%	33%	34%	50%	66%	68%	69%	71%	73%	75%	77%	79%	80%	82%	85%	87%	89%	96%	96%

New Service Area Annual Growth Rate:

0.5% Existing Service Area Growth Rate:

Service Area							Pro	jected Pea	k Hourly F	low (gpm)	- 20 Year P	Period at 0.	5% Annua	l Growth F	rom the St	art of Phs	e Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2048
Sunrise Cove	30	30	30	30	31	31	31	31	31	31	32	32	32	32	32	32	32	33	33	33	33	33	33	33
Phase 1		140	280	281	283	284	286	287	289	290	291	293	294	296	297	299	300	302	303	305	306	308	308	308
Phase 2									155	310	312	313	315	316	318	319	321	323	324	326	327	329	341	341
Projected SR 394 PS Flow	30	170	310	312	313	315	317	318	475	631	634	638	641	644	647	651	654	657	660	664	667	670	682	682
% Capacity of SR 394 PS	3%	17%	30%	30%	30%	31%	31%	31%	46%	61%	62%	62%	62%	63%	63%	63%	63%	64%	64%	64%	65%	65%	66%	66%

11196997	DESIGNED BY:	WWW	
SCCLSD	-		
Sewer Extension	CHECKED BY:	DDW	
ay, April 7, 2020	PAGE:	3 of	4

285 Delaware Avenue Buffalo, NY 14202 (716) 856-2142 <u>www.ghd.com</u>

Projected Hydraulic Loading for Hadley Bay Pumping Station

Assumptions:

- Proposed pumping capacity of the Hadley Bay Pumping Station is approximately 680 gpm.

2.5%

- The construction of the West Side Sewer Extension phases are 7 years apart to allow for EFC funding eligibility; Map, Plan, and Report; funding application; detailed design; and bidding.

New Service Area Annual Growth Rate:

Existing Service Area Growth Rate:

2.5%

Service Area							Proj	jected Pea	k Hourly F	low (gpm)	- 20 Year P	Period at 2.	5% Annua	l Growth F	rom the St	art of Phse	e Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2048
Phase 1 (Stow and Hadley Bay Area)			90	92	95	97	99	102	104	107	110	112	115	118	121	124	127	130	134	137	140	144	147	147
Phase 2									155	310	318	326	334	342	351	360	368	378	387	397	407	417	427	508
Proj. Hadley Bay PS Flow	0	0	90	92	95	97	99	102	259	417	427	438	449	460	472	484	496	508	521	534	547	561	575	656
% Capacity of Hadley Bay PS	0%	0%	13%	14%	14%	14%	15%	15%	38%	61%	63%	64%	66%	68%	69%	71%	73%	75%	77%	78%	80%	82%	85%	96%

New Service Area Annual Growth Rate:

0.5% Existing Service Area Growth Rate:

Service Area							Pro	jected Pea	k Hourly F	low (gpm)	- 20 Year F	Period at 0.	5% Annua	l Growth F	rom the St	art of Phs	e Construc	tion						
Service Area	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2048
Phase 1 (Stow and Hadley Bay Area)			90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	110
Phase 2									155	310	312	313	315	316	318	319	321	323	324	326	327	329	331	343
Proj. Hadley Bay PS Flow	0	0	90	91	92	93	94	95	251	407	410	412	415	417	420	422	425	428	430	433	435	438	441	453
% Capacity of Hadley Bay PS	0%	0%	13%	13%	14%	14%	14%	14%	37%	60%	60%	61%	61%	61%	62%	62%	63%	63%	63%	64%	64%	64%	65%	67%

11196997	DESIGNED BY:	WWW
SCCLSD	-	
Sewer Extension	CHECKED BY:	DDW
ay, April 7, 2020	PAGE:	4 of 4
	-	

Appendix C Cost Estimate

Client: South and Center Chautauqua Lake Sewer Districts Project: West Side Sewer Extension Project - Phase 1 GHD Project No.: 11196997 Subject: Engineer's Opinion of Probable Project Cost Date: 04/09/2020

	Base Bid: West Side Sewer Extension	on Project - Phas	se 1		
Item No.	Description	Unit	Qty.	Unit Price	Total
1	Mob./Demob.	FMaxLS	1	\$350,000	\$350,00
2	Maintenance and Protection of Traffic	FMinLS	1	\$350,000	\$350,00
3	Clearing and Grubbing	LS	1	\$100,000	\$100,00
4	Soil Erosion and Sedimentation Control	LS	1	\$300,000	\$300,00
	1.25" HDPE Forcemain,				
5	Directional Drill or Open-cut	LF	25,000	\$20	\$500,00
C	2" HDPE Forcemain Installed	15			
6	via HDD or Open-Cut	LF	21,000	\$25	\$525,00
7	3" HDPE Forcemain Installed	15			
1	via HDD or Open-Cut	LF	7,200	\$30	\$216,00
0	8" HDPE Forcemain Installed				
8	via HDD or Open-Cut	LF	750	\$50	\$37,50
<u>^</u>	10" HDPE Forcemain Installed				
9	via HDD or Open-Cut	LF	21,650	\$65	\$1,407,25
10	Interstate I-86 Crossing via HDD	LF	750	\$350	\$262,50
11	Creek Crossings via HDD	EA	4	\$80,000	\$320,00
12	HDPE Pipeline Fittings	LS	1	\$230,000	\$230,00
13	2" Plug Valve	EA	50	\$1,500	\$75,00
14	3" Plug Valve	EA	14	\$1,750	\$24,50
15	8" Plug Valve	EA	3	\$5,000	\$15,00
16	10" Plug Valve	EA	36	\$7,000	\$252,00
17	Concrete Anchor Blocks	EA	202	\$2,500	\$505,00
18	Air/Vacuum Release - Complete	EA	36	\$8,500	\$306,00
19	2" Cleanout	EA	105	\$3,000	\$315,00
20	Lateral Kit - Complete	EA	224	\$300	\$67,20
21	Simplex Grinder - Complete	EA	223	\$10,000	\$2,230,00
22	Duplex Grinder - Complete	EA	5	\$20,000	\$100,00
23	Duplex Pump Station	EA	1	\$85,000	\$85,00
24	New Hadley Bay Pumping Station	LS	1	\$500,000	\$500,00
25	Sunrise Cove Pump Station Upgrades	LS	1	\$75,000	\$75,00
26	New SR 394 Pumping Station	LS	1	\$675,000	\$675,00
27	Electrical Services	EA	60	\$10,000	\$600,00
28	Electrical Handholes	EA	375	\$1,100	\$412,50
29	Select Back Fill	CY	8,150	\$55	\$448,25
30	Stone Driveway Restoration	SY	675	\$25	\$16,87
31	Asphalt Driveway Restoration	SY	1,250	\$80	\$100,00
32	Concrete Driveway Restoration	SY	675	\$125	\$84,37
33	State/County Road Restoration	SY	475	\$145	\$68,87
34	Town/Private Road Restoration	SY	1,925	\$120	\$231,00
35	Grass Restoration	SY	48,500	\$12	\$582,00
36	Replacement of 10/12/18/24-Inch HDPE Storm Sewer	LF	2,500	\$40	\$100,00
37	Repair of Well Pipe/Underdrain/Etc	LS	1	\$50,000	\$50,00
38	Interconnection to Existing 8" Goose Creek Force Main	LS	1	\$30,000	\$30,00
39	Goose Creek Pump Station Improvements	LS	1	\$150,000	\$150,00

\$30,000	\$10,000	3	EA	Replacement of Existing Air/Vacuum Release Valves	40						
\$25,000	\$100	250	CY	Extra Excavation and Backfill	41						
\$500,000	\$500,000	1	Allowance	General Construction Allowance	42						
\$75,000	\$75,000	1	Allowance	Land Acquisition	43						
\$13,330,000	Estimated Construction Subtotal:										
\$1,340,000	ntingency (10%):	Contingency (10%)									
\$1,810,000	strative (12.5%):	Engineering, Legal, & Administrative (12.5%)									
\$16 480 000	ion Total (2020).	ed Constructi	Estimat								

Estimated Construction Total (2020): \$16,480,000 Construction & Contingency total inflated 2% for 2022: \$16,780,000

Item No.	Description	Unit	Qty.	Unit Price	Total
A-9	10" HDPE Forcemain Installed via HDD or Open-Cut	LF	3,600	\$65	\$234,000
A-11	Creek Crossings via HDD	EA	2	\$80,000	\$160,000
A-12	HDPE Pipeline Fittings	LS	1	\$20,000	\$20,000
A-16	10" Plug Valve	EA	4	\$7,000	\$28,000
A-17	Concrete Anchor Blocks	EA	8	\$2,500	\$20,000
A-18	Air/Vacuum Release - Complete	EA	4	\$8,500	\$34,000
A-19	2" Cleanout	EA	5	\$3,000	\$15,000
A-26	DEDUCT - Downsize New SR 394 Pumping Station	LS	1	(\$75,000)	(\$75,000)
A-29	Select Back Fill	CY	1,350	\$55	\$74,250
A-30	Stone Driveway Restoration	SY	75	\$25	\$1,875
A-31	Asphalt Driveway Restoration	SY	250	\$80	\$20,000
A-32	Concrete Driveway Restoration	SY	75	\$125	\$9,375
A-33	State/County Road Restoration	SY	25	\$145	\$3,625
A-34	Town/Private Road Restoration	SY	75	\$120	\$9,000
A-35	Grass Restoration	SY	1,500	\$12	\$18,000
A-38	DEDUCT - Interconnection to Existing 8" Goose Creek Force Main	LS	1	(\$30,000)	(\$30,000)
A-39	DEDUCT - Goose Creek Pump Station Improvements	LS	1	(\$150,000)	(\$150,000)
A-40	DEDUCT - Replacement of Existing Air/Vacuum Release Valves	EA	3	(\$10,000)	(\$30,000)
		Est	imated Const	ruction Subtotal:	\$363,000
			Cor	tingency (10%):	\$37,000
	Est	imated Altern	ate 'A' Bid Co	nstruction Total:	\$400,000
	Orantzatio	n O Cantinga	nov total inflat	ad 20/ for 2022	¢409.000

Construction & Contingency total inflated 2% for 2022: \$408,000

	Alternate Bid 'B': Design of "Duplex" Lift Stations											
Item No.	Description	Unit	Unit Price	Total								
B-22	DEDUCT - Duplex Grinder without installed spare - Complete	EA	4	(\$20,000)	(\$80,000)							
B-23	Duplex Pump Station with installed spare - Complete	EA	4	\$85,000	\$340,000							
	Estimated Construction Subtotal:											
	ntingency (10%):	\$26,000										
	Estimated Alternate 'A' Bid Construction Total											
	Construct	ion & Continge	ncy total infla	ted 2% for 2022:	\$292,000							

Appendix D Preliminary Soil Boring Logs

Filename: N:USIAmhershProjects/564/11196997/Digital_Design/ACAD 2018/Figures/Project Review Meeting/11196997-FIG003.dwg Plot Date: 12 February 2020 - 7:56 AM

3553 Crittenden Road Alden, NY 14004 (716) 937- 6527 www.nwcontracting.com

HOLE NUMBER: B1

ELEVATION:

DATE: <u>11/7/19</u> PROJECT:

Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722 GHD

PREPARED FOR: BORING LOCATION:

5 0 - SN	1 0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	TEMPORARY WELL	REMARKS	COMMENTS
1	12						Extremely moist, dark	1.0'		Temporary	
		14			24		brown (SILT) topsoil, with trace very fine size sand,			1" piezomete	silty soil fill to 1.8 feet over silty slackwater
			10		24	\otimes	loose, with fine size roots			piezomete	sediment to 4.5 feet
				7		\times	γ Extremely moist, brown			Soil	over water sorted and
2	15						(SILT) fill, with 10 to 15%	1.2'		backfill	deposited sand and
		12					gravel, trace clay, compact				gravel to 6.5 feet over
			17		29		Extremely moist, olive gray				sandy slackwater sediment with trace
				19			to gray (SANDY-SILT) with little to some very fine size				gravel to end of boring
3	4					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	sand, compact, thinly 4.5	0.9'			graver to only or borning
		10					\bedded			5.0	
5	+		12		22		Wet, gray to brown, very			Sand	
	+			11			gravelly (SILTY-SAND)			backfill	
4	7						with 40 to 50% gravel, very	1.3'			
H	+	2					fine to very coarse size $_{6.5}$ $\sqrt{1000}$ sand, little silt, compact in/			Water level 5.3'	
	-		2		4		place, stratified			bgs	Water in augers at
	+		2	2			Wet, brown (SILTY-SAND)			- 5-	completion 6.9' bgs
5				2			with 5 to 10% fine size	1.2'			
5	4	-					gravel, very fine to fine size	1.2			
	_	2			5		sand, little silt, loose, thinly bedded				
	_		3				bedded				
o ——	_			4							
6	4							1.4'			
		2									
			2		4						
				3			15.0			5.0	
5						····	Boring completed at 15.0'		••		
	+						bgs				
	+										
	+										
	+										
_	+										
\vdash	+										
	+										
	_										
)_ _											1
L(JG	JU	ΞD	ВY	: Da	ale IVI.	Gramza, P.G.		PAG	E <u>1</u> of	1

3553 Crittenden Road Alden, NY 14004 (716) 937- 6527 www.nwcontracting.com

HOLE NUMBER: B2

ELEVATION:

DATE: <u>11/6/19</u> PROJECT:

Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR:
BORING LOCATION:

SN	0/ 6	6/ 12	12/ 18	18/ 24	Ν	LITH	DESCRIPTION AND CLASSIFICATION	REC	TEMPORARY WELL	REMARKS	COMMENTS
1	5						Extremely moist, dark	0.8'		Temporary	
		12					brown (SILT) topsoil, with			. 1"	silty soil fill with some
			11		23		trace very fine size sand,			piezomete	r gravel to 2.0 feet over silty soil fill to 3.0 feet
				7			Noist, brownish gray to 2.0			Soil	over water sorted and
2	10						gray, gravelly (SILT) fill,	1.6'		backfill	deposited sand with
-	10					\mathbb{X}	with 20 to 40% gravel,			Buokim	some gravel to 6.0 feet
		11			21		trace very fine size sand, $\int_{1}^{3.0}$				over silty slackwater
			10				compact				sediment to 13.5 feet
				11			Extremely moist, reddish				over water sorted and
3	6						brown (SILT) fill, with trace	0.8'			deposited sand and
		8				2.5	very fine size sand,			i.0	gravel to end of boring
			8		16		compact			Sand	
			-	6			Extremely moist to wet,			backfill	
4	4			•			brown gravelly (SILTY-	1.3'			
4	4	-				د. بې و (م د و و و و م مې و م و م	SAND) with 20 to 40%				Water level at 6.5' bgs
		2			5		gravel, very fine size sand,				5
			3				little silt, compact, weakly stratified				
				4			Wet, faintly mottled, olive				
5	2						brown (SANDY-SILT) with	1.5'			
		2					little very fine size sand,				
			1		3		loose to very loose, thinly				
			•	3			bedded with occasional				
				3			(CLAYEY-SILT) lenses				
							below 12.5'				
6	2							1.3'			
	2										
		3			9		Wet, brown, very gravelly (SILTY-SAND) with 40 to				
			6				50% gravel, very fine to				
				8					15	.0	
							loose, stratified				
							Boring completed at 15.0'				
							bgs				
						1 I					

Hole Number: <u>B3</u>

ELEVATION:

DATE: <u>11/6/19</u>

PROJECT: Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR: BORING LOCATION:

0		6	12	18	24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
f	1	5						ר Extremely moist, dark brown (SILT)	0.8'	Topsoil to 0.2 foot over silty
			6			1.		topsoil with trace very fine size sand,		soil fill with trace gravel to 2.0
				7		13		compact, with numerous fine size roots		feet over apparent sandy soil
F					9		\times	Moist, brownish gray (SANDY-SILT) fill, with 10 to 15% gravel, little very fine size <u>2.0</u>		fill with some gravel to 5.0 fee over sandy slackwater
F	2	7				-		sand, compact	1.3'	sediment with trace gravel to
ŀ			8				XXX	Moist, faintly mottled, brown, gravelly		6.0 feet over water sorted and
F			-	11		19	Š XX	(SILTY-SAND) fill, with 20 to 40% gravel,		deposited sand with some
ŀ				···	13	-		compact		gravel to 12.5 feet over clayey
⊢	3	14				1			0.7'	lake sediment to end of boring
ŀ	3	14	9			1	XXX		-	
5 +			9	•		17		5.0 Extremely moist, distinctly mottled,		
-				8		-		brown (SILTY-SAND) with 5 to 15%		
					8	-		γ gravel, very fine size sand, compact, $\int_{-6.0}^{6.0}$	1.3'	
╞	4	8				-		\thinly bedded	1.5	
-			8			19		Extremely moist to wet, brownish gray to		
-				11		-		gray, gravelly (SILTY-SAND) with 20 to		
Ļ					16	-		40% gravel, very fine to fine size sand, little silt, compact to very dense below	4 01	Water level at 9.01 hrs
	5	21				-		8.0, stratified	1.2'	Water level at 8.0' bgs
			33			66		/		
				33						
₀⊥					15					
Ľ										
]				
Γ						1		12.5		
								Extremely moist, gray (CLAYEY-SILT)		
	6	7				1		with some clay, firm, thinly laminated	1.8	
Ē			4					with very thin coarse silt lenses		
				4		8				
F					7	1		15.0		
5								Boring completed at 15.0' bgs		
F										
F						1				
F										
╞						-				
╞						-				
╞						-				
╞										
╞						-				
╞						-				
₀_Ĺ								amza, P.G.		 PAGE 1 of 1

HOLE NUMBER: B4

ELEVATION:

DATE: <u>11/6/19</u> PROJECT:

Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR:
BORING LOCATION:

SN	۱ <mark>0/</mark>	6/ 12	12/ 18	18/ 24	Ν	LITH	DESCRIPTION AND CLASSIFICATION	REC	TEMPORARY WELL	REMARKS	COMMENTS
1	15						Gravel fill 0.2	0.5'		Temporary	
		10			16		Moist, gray, gravelly			1" nio-omoto	over sandy soil fill with
			6		10		(SILTY-SAND) fill, with 15 to 25% gravel, very fine			piezomete	little gravel and silt to 2.0 feet over silty
				10		\mathbf{X}	size sand, little silt, <u>2.0</u>			Soil	slackwater sediment to
2	6						\compact in place	1.0'		backfill	6.0 feet over water
		6					Extremely moist, faintly				sorted and deposited
			6		12		mottled, brown (SILT) with				sand and gravel to 8.0
				5			10 to 15% gravel, trace				feet over silty swamp sediment to 12.0 feet
3	10						clay, loose, weakly thinly bedded	0.6'			over clayey lake
		6					Soudou				sediment to end of
+			7		13				5	.o Sand	boring
-			-	8						backfill	
4	4	-		0			^{6.0} Wet, faintly mottled, brown,	0.4'			
4	4	-					very gravelly (SILTY-	0.1			Water level at 6.5' bgs
-	_	3			5		SAND) with 40 to 50% fine				C C
	_		2				size gravel, very fine size				
				1			sand, little silt, loose,	1.5'			
5	1						\stratified	1.5			
		1			2		Extremely moist, dark gray, mucky (SILT) with trace				
			1				very fine size sand, very				
				1			loose, thinly bedded with				
							layers of fibrous wood				
							material				
							12.0				
							Extremely moist, gray				
							(SILTY-CLAY) firm, thinly				
6	1						laminated with very thin	1.3'			
	1	2					coarse silt lenses				
			3		5						
				4					15		
+							Boring completed at 15.0'		[•••] 15	.0	
							bgs				
_							C .				
-		-									
	_										
_											
	_										
Ļ											
	ЭG	GG	ΞD	ΒY	': Da	ale M.	Gramza, P.G.		PAG	E 1 of	1

Hole Number: <u>B6</u>

ELEVATION:

DATE: <u>11/7/19</u>

PROJECT: Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR: BORING LOCATION:

|--|

s	N	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
	1	6						Extremely moist, dark brown to brown, 0.3	0.8'	Sand and gravel road
			22			29		very gravelly (SILTY-SAND) fill, with 40		shoulder fill to 0.3 foot over
				7		25		to 50% fine size gravel, very fine size sand, little silt, compact in place		sandy soil fill with little grave to 2.0 feet over silty glacial
					7			Extremely moist, brown, gravelly (SILTY-2.0		drift to 6.0 feet over silty
	2	6						SAND) fill, with 15 to 25% gravel, very	0.8'	glacial till to reufsal
			17			51		fine size sand, little silt, compact		
				34		51		Moist, faintly mottled, olive brown (SILT) with 5 to 15% gravel, trace very fine size		
					20			sand, dense, massive to weakly thinly		
:	3	6						bedded	0.9'	
			10			34				
				24		34				
					32			6.0		
4	4	17						Moist, gray (SILT) with 10 to 15% gravel,	1.0'	
			23			48		trace very fine size sand, very dense to		
				25		40		dense with brittle consistence, massive soil structure		
					21					
1	5	16							0.8'	
			40			>90				
				50/3"		>90				
]				
-	6	17							1.0'	
			50/5"			. 50		13.9		N
						>50		Auger refusal at 13.9' bgs		No water at completion
						1				
]				
						1				
						1				
	\uparrow					1				
					1	1				
						1				
						1				
<u> </u>	$\overline{\mathbf{O}}$	GC	FD	BY	Da	ale	M. Gr	amza, P.G.		PAGE 1 of 1

Hole Number: <u>B7</u>

ELEVATION:

DATE: <u>11/7/19</u> PROJECT:

Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR: BORING LOCATION:

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
0	1	4						Extremely moist, dark brown (SILT)	1.2'	Topsoil to 0.3 foot over silty
			2			5		topsoil, with 3 to 5% fine size gravel, trace very fine size sand, loose, with fine		lake sediment with little clay to 5.0 feet over water sorted and
				3				size roots		deposited sand with some
					5			Moist, distinctly mottled, brown		gravel to 8.0 feet over clayey
	2	4				- 15		(CLAYEY-SILT) with little clay, firm to stiff, blocky soil structure	1.0'	lake sediment to 12.0 feet over sandy glacial drift to end of boring
			6							
				9						
					9					
	3	6							1.2'	
Ī			6					5.0		
5				12		- 18 - - - 20		Extremely moist becoming wet below 6.5', faintly mottled, brown, gravelly (SILTY-SAND) with 20 to 40% gravel, very fine size sand, compact, weakly stratified	0.8'	Water level at 6.5' bgs
					15					
ŀ	4	6								
ŀ			10							
				10			8. aft			
ŀ					11					
:	5	4				25		Extremely moist, brown (CLAYEY-SILT) with some clay, very stiff, weakly thinly laminated with very thin coarse silt lenses	0.6'	
			10							
				15						
				-	16		F			
-							₩ ,			
-							\mathbb{R}^{-}			
ŀ	_							Extremely moist to wet, gray, gravelly		
ŀ								(SILTY-SAND) with 15 to 25% gravel,		
	6	16					•	very fine size sand, little silt, very dense,	1.5'	
	-	10	33					massive soil structure to weakly thinly		
			33	26		59		bedded		
-				20	30					
-					30			Boring completed at 15.0' bgs		
								Doning completed at 13.0 bgs		
╞										
	_									
-										
- 1					1		1			1

Hole Number: _____B8

DATE: <u>11/7/19</u> PROJECT: ELEVATION:

Subsurface Investigation for the Chautauqua Lake Sewer Project

PREPARED FOR: BORING LOCATION:

GHD

0	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
J —	1	6	11	10	7	21		Extremely moist, dark gray, gravelly (SILTY-SAND) fill, with 20 to 40% gravel, very fine size sand, compact Moist, brown, gravelly (SILTY-SAND) fill, with 20 to 40% gravely wave fine to fine	0.8'	Sand and gravel roadside fill to 0.3 foot over sandy soil fill with some gravel to 4.0 feet over water sorted and
-	2	9	7			10		with 20 to 40% gravel, very fine to fine size sand, compact	0.0'	deposited sand with some gravel to 8.0 feet over silty slackwater sediment to 12.0
				5	-	12				feet over silty glacial till to refusal
	3	30			7			4.0 Extremely moist becoming wet below	0.5'	
5 –			14	16		30		6.0', brown, gravelly (SILTY-SAND) with 20 to 40% gravel, very fine size sand,		
				10	23			little to some silt, compact, weakly stratified		
-	4	10	4						0.8'	
			4	7		11				
-	5	8			11			8.0 Moist, faintly mottled, olive gray (SILT)	1.3'	
	5	U	7			25		with 3 to 5% gravel, trace very fine size sand, compact, weakly thinly bedded		
-				18	18			sand, compact, weakly thing bedded		
0-										
-	_									
								12.0		
	_							Moist, olive gray, gravelly (SILT) with 15 to 25% gravel, with occasional cobbles,		
	6	50/5"						trace very fine size sand, very dense, massive soil structure	0.3'	No water at completion
	-					>50		Auger refusal at 13.4' bgs		
5 —										
-	_									
-										
-										
-										
0)66	FD	BY	ן י Dי	l ale I	I I M Gre	amza, P.G.		 PAGE 1 ₀f 1

Hole Number: <u>B9</u>

ELEVATION:

DATE: <u>11/7/19</u> PROJECT:

Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR: BORING LOCATION:

|--|

,	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
	1	10						Moist, grayish brown, very gravelly	0.8'	Sand and gravel fill to 0.3 foo
			12			20		(SILTY-SAND) fill, with 40 to 50% gravel,		over sandy soil fill with little
				8		20		very fine size sand, little silt, compact // Moist, brown, gravelly (SILTY-SAND) fill,		gravel to 2.0 feet over sandy slackwater sediment to 6.0
					10			with 15 to 25% gravel, very fine size 2.0		feet over silty slackwater
	2	6						\sand, little silt, compact	1.0'	sediment to 8.5 feet over silt
			12					Extremely moist, faintly mottled, brown		glacial drift with some grave
				17		29		(SILTY-SAND) with 5 to 15% gravel,		to reufsal
					21			very fine size sand, little to some silt, compact, weakly thinly bedded		
	3	16							0.0'	
			16			1				
-				17		33				
					14			6.0		
f	4	3				1		Moist to extremely moist, olive brown	1.2'	
ŀ			10			-		(SILT) with 5 to 15% gravel, trace very		Water level at 6.5' bgs
ľ				15		25		fine size sand, compact, thinly bedded		
Ē					25					
ŀ	5	5				-		8.5	0.2'	
ŀ			50/5"			-		Wet, grayish brown, gravelly (SILT) with		
ŀ						>50		20 to 40% gravel, with cobbles, trace		
F						-		very fine size sand, very dense, massive		
' -								soil structure to weakly stratified		
ŀ								Auger refusal at 10.5' bgs		
ŀ						-		0		
ŀ										
ŀ						-				
ŀ						-				
ŀ						-				
ŀ						-				
ŀ						-				
ŀ						-				
-						-				
ŀ						-				
-						-				
-						-				
-						-				
╞						-				
╞						-				
╞						-				
╞						-				
╞						-				
					1	1	1 1			1

Hole Number: B10

DATE: _____11/7/19

ELEVATION:

PROJECT: Subsurface Investigation for the Chautauqua Lake Sewer Project

Chautauqua Lake, New York 14722

PREPARED FOR: BORING LOCATION. GHD

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	REC	COMMENTS
1	14						_Topsoil	1.2'	Topsoil to 0.3 foot over silt
		7			45		Moist, faintly mottled, olive brown		glacial drift to 6.0 feet ove
			8		15		(CLAYEY-SILT) with 5 to 15% gravel,		silty tending towards claye glacial till to refusal
				5			little clay, stiff to hard, massive soil structure to weakly thinly bedded		
2	10				1	F = -]	Structure to weakly training bedded	0.8'	
		7							
			9		16				
			-	12					
3	10			12	-			0.9'	
3	10	47			-				
		17			36				
_			19		-				
_				21	-		6.0	0.61	
4	33				-		Moist, faintly mottled, olive gray	0.6'	
		30			>80		becoming gray below 12.5' (CLAYEY- SILT) with 5 to 15% gravel, little to some		
			50/5"				clay, hard, massive soil structure		
5	15							0.3'	
		50/5"]				
					>50				
					1				
					-				
_					1				
_					-				
					-				
-					-			0.4'	
6	25				-			0.4	
		50/5"			>50		Auger refusal at 13.9' bgs		No water at completion
_					-		Auger reiusar at 10.9 bys		····
					_				
					1				
					1				
					1				
					1				
					1				
					-				
							amza, P.G.		1

Appendix E Hydraulic Model

Project Number: <u>11196997</u> Project Name: <u>SCCLSD - West Side Sewer Extension</u> Date: <u>April 7, 2020</u>

Hadley Bay Pumping Station and 10" Force Main - Hydraulic Profile (Phase 1 Buildout)

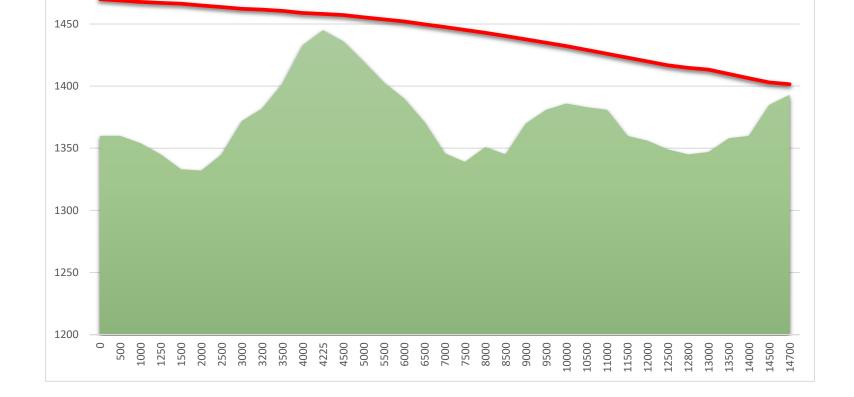
Pipe ID (in) =	9.41
Pipe C-Factor =	120
Hadley Bay PS Flow Rate =	460
Hadley Bay PS Pump Head =	110
(Target Flow Rates: 460 gpm and 680 gpm)	

 DIPS (ID)

 8" HDPE DR 17
 7.92

 10" HDPE DR 17
 9.72

IPS (ID)


7.55

9.41

Legend High Point Duplex Station Location

Duplex Station	Flow Rate (gpm)	Pump Status	Required TDH		
Campground	50	ON	122		
Connelly Park	60	ON	80		
Lakeview Avenue	100	ON	79		
Elm Street	60	ON	95		
Longview Road	60	ON	46		
Chaut Avenue	50	ON	70		

Length	Elevation	Hadley Bay Flow Rate	Campground Flow Rate	Connelly Park Flow Rate	Lakeview Avenue Flow Rate	Elm Street Flow Rate	Longview Road Flow Rate	Chaut Avenue Flow Rate	Total Force Main Flow Rate	Pipe Velocity (fps)	Headloss (ft)	HGL (ft)	Pipeline Pressure (psi)
0	1360	460	0	0	0	0	0	0	460	2.12	0.0	1470	48
500	1360	460	0	0	0	0	0	0	460	2.12	1.1	1469	47
1000	1354	460	0	0	0	0	0	0	460	2.12	1.1	1468	49
1250	1345	460	50	0	0	0	0	0	510	2.35	0.7	1467	53
1500	1333	460	50	0	0	0	0	0	510	2.35	0.7	1466	58
2000	1332	460	50	0	0	0	0	0	510	2.35	1.4	1465	58
2500	1345	460	50	0	0	0	0	0	510	2.35	1.4	1464	51
3000	1372	460	50	0	0	0	0	0	510	2.35	1.4	1462	39
3200	1382	460	50	60	0	0	0	0	570	2.63	0.7	1462	34
3500	1402	460	50	60	0	0	0	0	570	2.63	1.0	1461	25
4000	1433	460	50	60	0	0	0	0	570	2.63	1.7	1459	11
4225	1445	460	50	60	0	0	0	0	570	2.63	0.8	1458	6
4500	1436	460	50	60	0	0	0	0	570	2.63	0.9	1457	9
5000	1420	460	50	60	0	0	0	0	570	2.63	1.7	1455	15
5500	1403	460	50	60	0	0	0	0	570	2.63	1.7	1454	22
6000	1390	460	50	60	0	0	0	0	570	2.63	1.7	1452	27
6500	1371	460	50	60	100	0	0	0	670	3.09	2.3	1450	34
7000	1346	460	50	60	100	0	0	0	670	3.09	2.3	1448	44
7500	1339	460	50	60	100	0	0	0	670	3.09	2.3	1445	46
8000	1351	460	50	60	100	0	0	0	670	3.09	2.3	1443	40
8500	1345	460	50	60	100	60	0	0	730	3.37	2.7	1440	41
9000	1370	460	50	60	100	60	0	0	730	3.37	2.7	1438	29
9500	1381	460	50	60	100	60	0	0	730	3.37	2.7	1435	23
10000	1386	460	50	60	100	60	0	0	730	3.37	2.7	1432	20
10500	1383	460	50	60	100	60	60	0	790	3.64	3.1	1429	20
11000	1381	460	50	60	100	60	60	0	790	3.64	3.1	1426	20
11500	1360	460	50	60	100	60	60	0	790	3.64	3.1	1423	27
12000	1356	460	50	60	100	60	60	0	790	3.64	3.1	1420	28
12500	1349	460	50	60	100	60	60	0	790	3.64	3.1	1417	29
12800	1345	460	50	60	100	60	60	50	840	3.88	2.1	1415	30
13000	1347	460	50	60	100	60	60	50	840	3.88	1.4	1413	29
13500	1358	460	50	60	100	60	60	50	840	3.88	3.5	1410	22
14000	1360	460	50	60	100	60	60	50	840	3.88	3.5	1406	20
14500	1385	460	50	60	100	60	60	50	840	3.88	3.5	1403	8
14700	1393	460	50	60	100	60	60	50	840	3.88	1.4	1402	4

Project Number: <u>11196997</u> Project Name: <u>SCCLSD - West Side Sewer Extension</u> Date: <u>April 7, 2020</u>

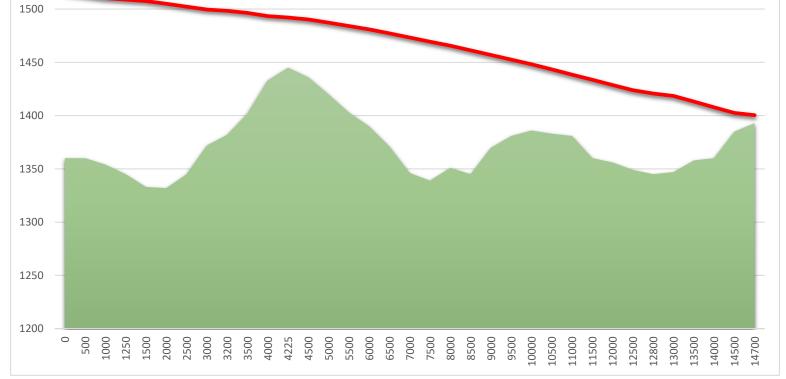
Hadley Bay Pumping Station and 10" Force Main - Hydraulic Profile (Full Buildout)

Pipe ID (in) =	9.41
Pipe C-Factor =	120
Hadley Bay PS Flow Rate =	680
Hadley Bay PS Pump Head =	155
(Target Flow Rates: 460 gpm and 680 gpm)	

	DIPS (ID)	
8" HDPE DR 17	7.92	
10" HDPE DR 17	9.72	

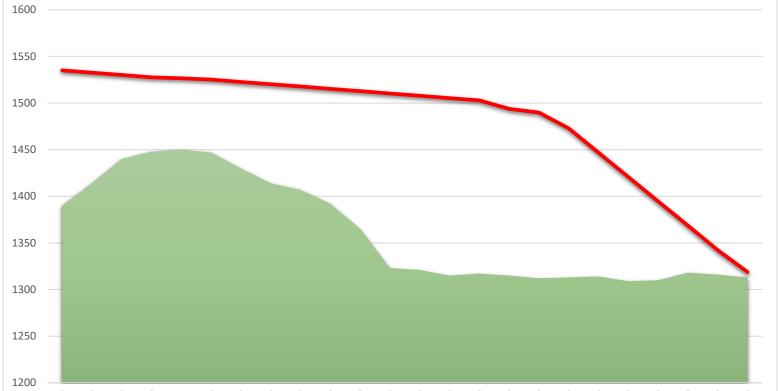
IPS (ID)

7.55


9.41

Duplex Station	Flow Rate (gpm)	Pump Status	Required TDH
Campground	50	ON	164
Connelly Park	60	ON	116
Lakeview Avenue	100	ON	106
Elm Street	60	ON	116
Longview Road	60	ON	60
Chaut Avenue	50	ON	76

Length	Elevation	Hadley Bay Flow Rate	Campground Flow Rate	Connelly Park Flow Rate	Lakeview Avenue Flow Rate	Elm Street Flow Rate	Longview Road Flow Rate	Chaut Avenue Flow Rate	Total Force Main Flow Rate	Pipe Velocity (fps)	Headloss (ft)	HGL (ft)	Pipeline Pressure (psi)
0	1360	680	0	0	0	0	0	0	680	3.14	0.0	1515	67
500	1360	680	0	0	0	0	0	0	680	3.14	2.3	1513	66
1000	1354	680	0	0	0	0	0	0	680	3.14	2.3	1510	68
1250	1345	680	50	0	0	0	0	0	730	3.37	1.3	1509	71
1500	1333	680	50	0	0	0	0	0	730	3.37	1.3	1508	76
2000	1332	680	50	0	0	0	0	0	730	3.37	2.7	1505	75
2500	1345	680	50	0	0	0	0	0	730	3.37	2.7	1502	68
3000	1372	680	50	0	0	0	0	0	730	3.37	2.7	1500	55
3200	1382	680	50	60	0	0	0	0	790	3.64	1.2	1498	50
3500	1402	680	50	60	0	0	0	0	790	3.64	1.9	1497	41
4000	1433	680	50	60	0	0	0	0	790	3.64	3.1	1493	26
4225	1445	680	50	60	0	0	0	0	790	3.64	1.4	1492	20
4500	1436	680	50	60	0	0	0	0	790	3.64	1.7	1490	24
5000	1420	680	50	60	0	0	0	0	790	3.64	3.1	1487	29
5500	1403	680	50	60	0	0	0	0	790	3.64	3.1	1484	35
6000	1390	680	50	60	0	0	0	0	790	3.64	3.1	1481	39
6500	1371	680	50	60	100	0	0	0	890	4.11	3.9	1477	46
7000	1346	680	50	60	100	0	0	0	890	4.11	3.9	1473	55
7500	1339	680	50	60	100	0	0	0	890	4.11	3.9	1469	56
8000	1351	680	50	60	100	0	0	0	890	4.11	3.9	1466	50
8500	1345	680	50	60	100	60	0	0	950	4.38	4.4	1461	50
9000	1370	680	50	60	100	60	0	0	950	4.38	4.4	1457	38
9500	1381	680	50	60	100	60	0	0	950	4.38	4.4	1453	31
10000	1386	680	50	60	100	60	0	0	950	4.38	4.4	1448	27
10500	1383	680	50	60	100	60	60	0	1010	4.66	4.9	1443	26
11000	1381	680	50	60	100	60	60	0	1010	4.66	4.9	1438	25
11500	1360	680	50	60	100	60	60	0	1010	4.66	4.9	1434	32
12000	1356	680	50	60	100	60	60	0	1010	4.66	4.9	1429	31
12500	1349	680	50	60	100	60	60	0	1010	4.66	4.9	1424	32
12800	1345	680	50	60	100	60	60	50	1060	4.89	3.2	1421	33
13000	1347	680	50	60	100	60	60	50	1060	4.89	2.1	1419	31
13500	1358	680	50	60	100	60	60	50	1060	4.89	5.3	1413	24
14000	1360	680	50	60	100	60	60	50	1060	4.89	5.3	1408	21
14500	1385	680	50	60	100	60	60	50	1060	4.89	5.3	1403	8
14700	1393	680	50	60	100	60	60	50	1060	4.89	2.1	1400	3

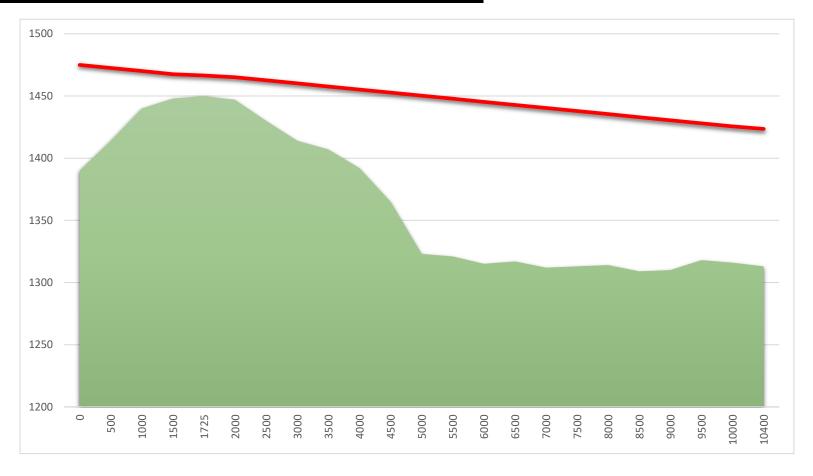


SR 394 Pumping Station and 10" Force Main Tie-In to Existing 8" Goose Creek Force Main - Hydraulic Profile (Phase 1 Buildout)

New Pipe ID (in) =	9.41		DIPS (ID)	IPS (ID)	Legend
Existing Pipe ID =	7.94	8" HDPE DR 17	7.92	7.55	High Point
Pipe C-Factor =	120	10" HDPE DR 17	9.72	9.41	
SR 394 PS Flow Rate =	700		-		Goose Creek PS Interconnection
SR 394 PS Pump Head =	145	Goose Creek Flow Rate =	400	Existing	
(Target Flow Rates: 700 gpm)					

Length	Elevation	SR 394 Flow Rate	Goose Creek Flow Rate	Total Force Main Flow Rate	Pipe Velocity (fps)	Headloss (ft)	HGL (ft)	Pipeline Pressure (psi)
0	1390	700	0	700	3.23	0.0	1535	63
500	1414	700	0	700	3.23	2.5	1533	51
1000	1440	700	0	700	3.23	2.5	1530	39
1500	1448	700	0	700	3.23	2.5	1528	34
1725	1450	700	0	700	3.23	1.1	1526	33
2000	1447	700	0	700	3.23	1.4	1525	34
2500	1430	700	0	700	3.23	2.5	1523	40
3000	1414	700	0	700	3.23	2.5	1520	46
3500	1407	700	0	700	3.23	2.5	1518	48
4000	1392	700	0	700	3.23	2.5	1515	53
4500	1365	700	0	700	3.23	2.5	1513	64
5000	1323	700	0	700	3.23	2.5	1510	81
5500	1321	700	0	700	3.23	2.5	1508	81
6000	1315	700	0	700	3.23	2.5	1505	82
6500	1317	700	0	700	3.23	2.5	1503	80
6850	1315	700	400	1100	7.13	9.1	1494	77
7000	1312	700	400	1100	7.13	13.1	1490	77
7500	1313	700	400	1100	7.13	17.0	1473	69
8000	1314	700	400	1100	7.13	26.1	1447	57
8500	1309	700	400	1100	7.13	26.1	1421	48
9000	1310	700	400	1100	7.13	26.1	1395	37
9500	1318	700	400	1100	7.13	26.1	1368	22
10000	1316	700	400	1100	7.13	26.1	1342	11
10400	1313	700	400	1100	7.13	23.5	1319	3

	0	500	1000	1500	1725	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	6850	7000	7500	8000	8500	0006	9500	10000	10400	

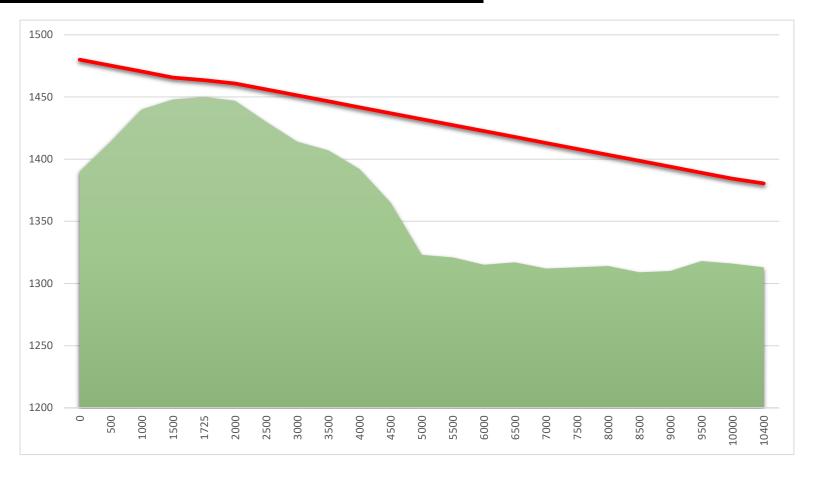

Project Number: <u>11196997</u> Project Name: <u>SCCLSD - West Side Sewer Extension</u> Date: <u>April 7, 2020</u>

SR 394 Pumping Station and 10" Force Main (Alternate Connection) - Hydraulic Profile (Phase 1 Buildout)

Pipe ID (in) =	9.41		DIPS (ID)	IPS (ID)	Legend
Pipe C-Factor =	120	8" HDPE DR 17	7.92	7.55	High Point
SR 394 PS Flow Rate =	700	10" HDPE DR 17	9.72	9.41	
SR 394 PS Pump Head =	85				_

(Target Flow Rates: 700 gpm and 1,000 gpm)

Length	Elevation	SR 394 Flow Rate	Total Force Main Flow Rate	Pipe Velocity (fps)	Headloss (ft)	HGL (ft)	Pipeline Pressure (psi)
0	1390	700	700	3.23	0.0	1475	37
500	1414	700	700	3.23	2.5	1473	25
1000	1440	700	700	3.23	2.5	1470	13
1500	1448	700	700	3.23	2.5	1468	8
1725	1450	700	700	3.23	1.1	1466	7
2000	1447	700	700	3.23	1.4	1465	8
2500	1430	700	700	3.23	2.5	1463	14
3000	1414	700	700	3.23	2.5	1460	20
3500	1407	700	700	3.23	2.5	1458	22
4000	1392	700	700	3.23	2.5	1455	27
4500	1365	700	700	3.23	2.5	1453	38
5000	1323	700	700	3.23	2.5	1450	55
5500	1321	700	700	3.23	2.5	1448	55
6000	1315	700	700	3.23	2.5	1445	56
6500	1317	700	700	3.23	2.5	1443	54
7000	1312	700	700	3.23	2.5	1440	56
7500	1313	700	700	3.23	2.5	1438	54
8000	1314	700	700	3.23	2.5	1435	53
8500	1309	700	700	3.23	2.5	1433	54
9000	1310	700	700	3.23	2.5	1430	52
9500	1318	700	700	3.23	2.5	1428	48
10000	1316	700	700	3.23	2.5	1426	47
10400	1313	700	700	3.23	2.0	1424	48


Project Number: <u>11196997</u> Project Name: <u>SCCLSD - West Side Sewer Extension</u> Date: <u>April 7, 2020</u>

SR 394 Pumping Station and 10" Force Main - Hydraulic Profile (Full Buildout)

Pipe ID (in) =	9.41		DIPS (ID)	IPS (ID)	Legend
Pipe C-Factor =	120	8" HDPE DR 17	7.92	7.55	High Point
SR 394 PS Flow Rate =	1000	10" HDPE DR 17	9.72	9.41	
SR 394 PS Pump Head =	90				-

(Target Flow Rates: 700 gpm and 1,000 gpm)

Length	Elevation	SR 394 Flow Rate	Total Force Main Flow Rate	Pipe Velocity (fps)	Headloss (ft)	HGL (ft)	Pipeline Pressure (psi)
0	1390	1000	1000	4.61	0.0	1480	39
500	1414	1000	1000	4.61	4.8	1475	27
1000	1440	1000	1000	4.61	4.8	1470	13
1500	1448	1000	1000	4.61	4.8	1466	8
1725	1450	1000	1000	4.61	2.2	1463	6
2000	1447	1000	1000	4.61	2.6	1461	6
2500	1430	1000	1000	4.61	4.8	1456	11
3000	1414	1000	1000	4.61	4.8	1451	16
3500	1407	1000	1000	4.61	4.8	1447	17
4000	1392	1000	1000	4.61	4.8	1442	22
4500	1365	1000	1000	4.61	4.8	1437	31
5000	1323	1000	1000	4.61	4.8	1432	47
5500	1321	1000	1000	4.61	4.8	1427	46
6000	1315	1000	1000	4.61	4.8	1423	47
6500	1317	1000	1000	4.61	4.8	1418	44
7000	1312	1000	1000	4.61	4.8	1413	44
7500	1313	1000	1000	4.61	4.8	1408	41
8000	1314	1000	1000	4.61	4.8	1403	39
8500	1309	1000	1000	4.61	4.8	1399	39
9000	1310	1000	1000	4.61	4.8	1394	36
9500	1318	1000	1000	4.61	4.8	1389	31
10000	1316	1000	1000	4.61	4.8	1384	30
10400	1313	1000	1000	4.61	3.8	1380	29

Appendix F Pump Curves

V2 GRINDER SERIES

SHREDDING WASTEWATER CHALLENGES

pentair.com

MYERS[®] V2 SERIES SUBMERSIBLE GRINDER PUMPS

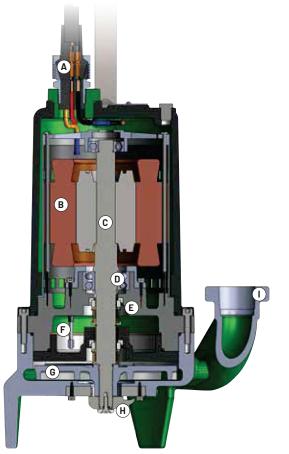
The Myers V2 series grinder is engineered from the ground up, in order to overcome the increased debris and higher pressure required in today's wastewater environment. It features a patented axial cutter design and semi-open impeller to effectively macerate challenging sewage solids into a fine slurry.

PATENTED AXIAL CUTTER TECHNOLOGY

Easily slices through solids and trash found in domestic wastewater without roping or clogging.

ADVANCED HYDRAULICS

The only single stage 2 HP grinder that can deliver up to 185' of lift for superior performance and reliability.



LEGENDARY SEAL LEAK DETECTION

True early warning system for reduced downtime and maintenance costs.

Page2/4

Features

A. Cable Entry System

- NEW! Optional quick disconnect cord available for ease of maintenance
- Cable jacket sealed by compression fitting; individual wires sealed by compression grommet for double seal protection against water ingress
- Replace power cord without disturbing • motor for ease of maintenance

B. Oil-Filled Motor

- Maximizes heat dissipation; provides constant bearing lubrication for long life
- High torque start/run capacitor for single or three-phase motors, assured starting under heavy loads

C. Heavy 416 SST Shaft

• Corrosion resistant, reduces shaft deflection for long life

D. Lower Double Row Ball Bearings

• Absorb both axial and radial loads for increased durability

E. Double Mechanical Shaft Seals

 In oil-filled seal chamber for continuous lubrication, superior motor protection

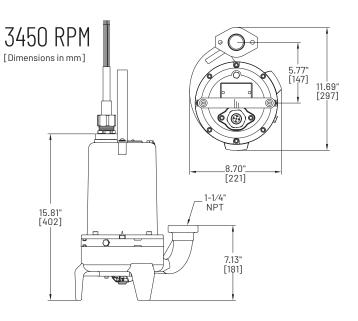
F. Seal Leak Probe

- Located in seal chamber instead of motor area for true early warning of water leaks. Allows corrective action before costly motor or bearing failure occurs.
- Activates warning light in control panel

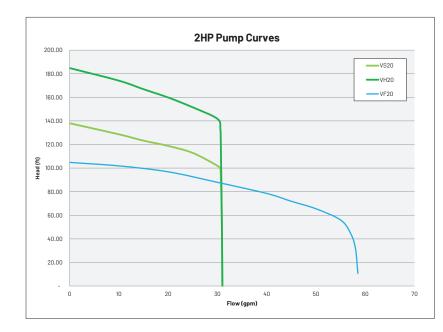
G. SST Semi-Open Impeller

- Provides improved performance, resists clogging
- Pump-out vanes help keep trash from seal, reduces pressure at seal face for longer life

H. Axial Cutter System


- Constructed of 440 SST hardened to 57-60Rc for long life
- Easily replaceable without dismantling pump

I. Volute Case


• Cast iron 1-1/4" NPT vertical flanged discharge

			0		-	0	-	NEC Code	Service		Standa	rd Cord
	V/Ph/Hz	HP	Start Amps	FL Amps	Full Load kW	Start KVA	FL KVA	Letter	Factor	Model	20'	35′
	070/1/00		10	10.5		11.07	(00	0	1	Catalog	VH20-21-20	VH20-21-35
	230/1/60	2	49	18.5	4.2	11.27	4.26	G	1	Eng	28148D000	28148D004
	200/3/60	2	53	12.5	3.9	18.3	4.33	1	1	Catalog	VH20-03-20	VH20-03-35
- T	200/3/60	2	53	12.5	3.9	10.0	4.00	L	1	Eng	28148D001	28148D005
High Head	230/3/60	2	46	12	3.9	18.3	4.77	L	1	Catalog	VH20-23-20	VH20-23-35
ligh	230/3/00		40	12	3.5	10.0	4.//	L	1	Eng	28148D002	28148D006
-	460/3/60	2	23	6	3.9	18.3	4.77	1	1	Catalog	VH20-43-20	VH20-43-35
ļ	400/3/00	2	20	0	0.0	10.0	4.77	L 1		Eng	28148D003	28148D007
	575/3/60	2	25	5	3.9	24.9	4.98	L	1	Catalog	VH20-53-20	VH20-53-35
	37373700	2	23	5	0.0	24.0	4.30	L	· ·	Eng	28148D020	28148D021
	000/1/00	_	00	10	7.0	17.0	7.0	0	1	Catalog	VS20-01-20	VS20-01-35
	200/1/60	2	66	16	3.2	13.2	3.2	G	1	Eng	28151D020	28151D021
	070/1/00	_	(0	17 5	7.0	11.07	3.12	0	1	Catalog	VS20-21-20	VS20-21-35
	230/1/60	2	49	13.5	3.2	11.27	3.1Z	G	1	Eng	28151D000	28151D004
Standard Flow	200/3/60	2	53	10	3.2	18.3	3.46	L	1	Catalog	VS20-03-20	VS20-03-35
E E	200/3/00	2	55	10	J.2	10.0	3.40	L	I	Eng	28151D001	28151D005
anda	230/3/60	2	46	9	3.2	18.3	3.58	L	1	Catalog	VS20-23-20	VS20-23-35
Sta	230/3/00	2	40	0	0.2	10.0	0.00	L		Eng	28151D002	28151D006
	460/3/60	2	23	4.2	3.2	18.3	3.35	L	1	Catalog	VS20-43-20	VS20-43-35
	100/0/00	2	20	7.2	0.2	10.0	0.00	L		Eng	28151D003	28151D007
	575/3/60	2	25	5	3.9	24.9	4.98	L	1	Catalog	VS20-53-20	VS20-53-35
	37370700		25	5	0.0	24.0	4.50	L	1	Eng	28151D022	28151D023
		_						_		Catalog	VF20-01-20	VF20-01-35
	200/1/60	2	66	16	3.2	13.2	3.2	G	1	Eng	28247D020	28247D021
	070 // /00		10	47.5	7.0	44.07	7.40	<u>^</u>		Catalog	VF20-21-20	VF20-21-35
	230/1/60	2	49	13.5	3.2	11.27	3.12	G	1	Eng	28247D000	28247D004
2	200/3/60	2	53	10	3.2	18.3	3.46		1	Catalog	VF20-03-20	VF20-03-35
Fo	200/3/60	2	53	10	3.2	10.0	3.40	L	1	Eng	28247D001	28247D005
High Flow	230/3/60	2	46	9	3.2	18.3	3.58	L	1	Catalog	VF20-23-20	VF20-23-35
-	230/3/00	<u> </u>	40	9	J.Z	10.0	3.30	L		Eng	28247D002	28247D006
	460/3/60	2	23	4.2	3.2	18.3	3.35	L	1	Catalog	VF20-43-20	VF20-43-35
	400/3/00	2	20	4.2	0.2	10.0	0.00	L		Eng	28247D003	28247D007
	575/3/60	2	25	5	3.9	24.9	4.98	L	1	Catalog	VF20-53-20	VF20-53-35
	3737370700	<u> </u>	23	5	0.0	24.0	4.00	L	'	Eng	28247D022	28247D023

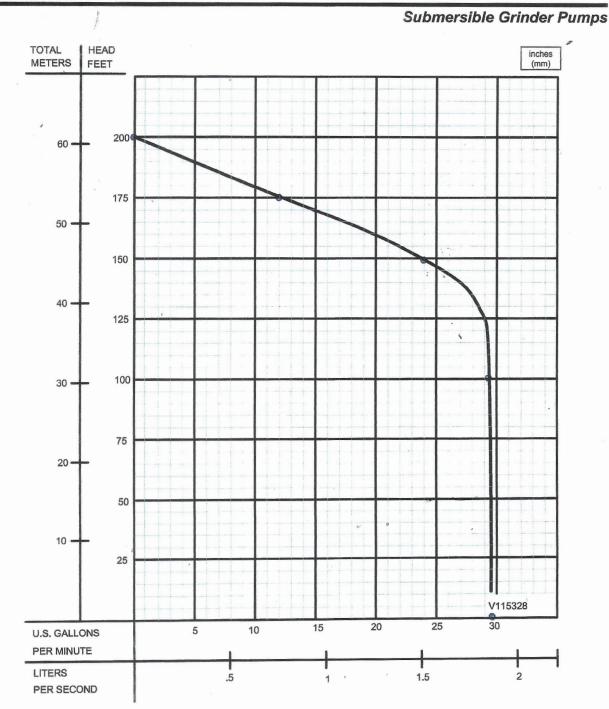
Performance Data and Dimensions

Produ	uct Capabilities	
Capacities To	58.5 gpm	221.4 lpm
Heads To	185 ft.	56.34 m
Liquids Handling	domestic r	aw sewage
Intermittent Liquid Temp.	up to 140°F	up to 60°C
Winding Insulation Temp. (Class F)	311°F	155°C
Motor Electrical Data (Single phase motors are capacitor start type. Myers control panels or capacitor kits are recommended for proper operation and warranty.)	3 ph – indu	tor start/run. s; 60 Hz
Std. Third Party Approvals	CS	SA
Acceptable pH Range	6 -	- 9
Specific Gravity	.9 -	- 1.1
Viscosity	28 - 3	5 SSU
Discharge (Flange Dia.)	1-1/4 in.	31.75 mm
Min. Sump Diameter Simplex Duplex	24 in. 36 in.	61.0 cm 91.4 cm

Construc	tion Materials
Motor Housing, Seal Housing, Cord Cap and Volute Case	Cast Iron, Class 30, ASTM A48
Impeller	Semi-Open, Stainless Steel
Mechanical Seals: Standard Optional	Double Tandem Carbon and Ceramic Lower Tungsten Carbide
Pump, Motor Shaft	416 SST
Fasteners	300 Series SST
Rotating Cutter, Stationary Cutter	440 SST 57-60 Rockwell

PENTAIR

1101 Myers Parkway | Ashland, OH 44805 | Ph: 855.274.8948 | pentair.com/pentair-myers


All Pentair trademarks and logos are owned by Pentair. All other brands or product names are trademarks or registered marks of their respective owners. Because we are continuously improving our products and services, Pentair reserves the right to change specifications without prior notice. Pentair is an equal opportunity employer. Pump ID - 1

Preliminary Crane Grinder Pump Selection

WWW.cranepumps.com

Models OGP-L & OGP-AUE

Performance Curve 2HP, 3450RPM, 60Hz

Testing is performed with water, specific gravity 1.0 @ 68° F @ (20°C), other fluids may vary performance

Preliminary Myer WG (X)75HH/100H/150H

Standard and Explosion-Proof 7½, 10, and 15 HP High Head Submersible Grinder Pumps

YERS HIGH HEAD 7½, 10 & 15 HORSEPOWER SUBMERSIBLE CENTRIFUGAL GRINDER PUMPS ARE DESIGNED FOR MUNICIPAL, COMMERCIAL OR INDUSTRIAL APPLICATIONS. These pumps are especially suited for use in pressure sewer applications or in systems with long discharge runs or high static heads. The pumps feature a heavy-duty cutter mechanism and recessed impeller designed to efficiently grind typical sewage solids into a fine slurry.

The grinder pumps are available in standard and FM Listed explosion-proof construction for use in Class 1, Groups C & D hazardous locations.

Myers grinder pumps can be installed in a variety of packaged systems. Factory-assembled simplex or duplex packages with guide rail systems are available. Individual rail components are also available for installation in onsite concrete systems. Myers offers a complete line of submersible sump, sewage, effluent, grinder, non-clog wastewater pumps, controls, basins and accessories. For additional information, please contact your local Myers representative or the Myers Ashland, Ohio sales office at 419-289-1144.

ADVANTAGES BY DESIGN

- IDEAL FOR USE IN PRESSURE SEWER SYSTEMS.
- Recessed impeller provides steep non-overloading operating curve.

DURABLE MOTOR WILL DELIVER MANY YEARS OF RELIABLE SERVICE.

- Oil-filled motor for maximum heat dissipation and constant bearing lubrication.
- Recessed impeller reduces radial bearing loads; increases bearing life.
- High-torque three phase motors for assured starting under heavy load.
- Seal leak probes and on-winding heat sensors warn of seal leak condition, and stop motor if motor overheats. Helps prevent costly motor damage.

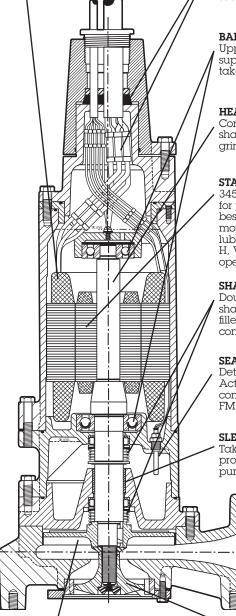
DESIGNED FOR EASY MAINTENANCE.

 Shredding ring and grinder impeller are replaceable without dismantling pump or motor.

PRODUCT CAPABILITIES

Capacities To	150 gpm	568 lpm							
Heads To	257 ft.	78 m							
Liquids Handling	domestic raw sewage								
Intermittent Liquid Temp.	up tol40ºF	up to 60ºC							
Winding Insulation Temp. (Class H)	356°F	180°C							
Motor Electrical Data	7½, 10 c 200/230/4) RPM md15 HP 60/575 volts ie, 60 Hz							
Std. Third Party Approvals	CSA								
Optional Approvals	FM Class 1, Groups C & I (WGX75HH/100H/150H only								
Acceptable pH Range	6	- 9							
Specific Gravity	.9 – 1.1								
Viscosity	28 – 35 SSU								
Discharge (Flange Dim.)	2½ in. 63.5 i								
NOTE: Consult factory for applications outside of these recommendations.									

Construction Materials	
Motor Housing, Seal Housing, Cord Cap and Volute Case	cast iron, Class 30 ASTM A48
Impeller, recessed	ductile iron
Power and Control Cord	25 ft. SOOW
Mechanical Seals Standard Optional	double tandem carbon and ceramic lower tungsten, carbide
Pump, Motor Shaft	416 SST
Fasteners	300 series SST
Shredding Ring and Grinder Impeller	440 SST, 58-60 Rockwell


WHERE INNOVATION MEETS TRADITION

Pentair Water

HEAT SENSOR

Protects motor from burnout due to excessive heat from any overload condition. Automatically resets when motor has cooled.

CABLE ENTRY SYSTEM

Provides double seal protection. Cable jacket sealed by compression grommet. Individual wires sealed by epoxy potting.

BALL BEARINGS

Upper and lower ball bearings support shaft and rotor and take axial and radial loads.

HEAVY 416 SST SHAFT

Corrosion resistant. Reduces shaft deflection due to grinding loads.

STATOR

3450 RPM, 3 phase. Press fit for perfect alignment and best heat transfer. Oil-filled motor conducts heat and lubricates bearings. Class H, VFD/continuous duty operation.

SHAFT SEALS

Double tandem mechanical shaft seals protect motor. Oil-filled seal chamber provides continuous lubrications.

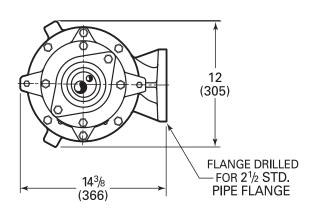
SEAL LEAK PROBES

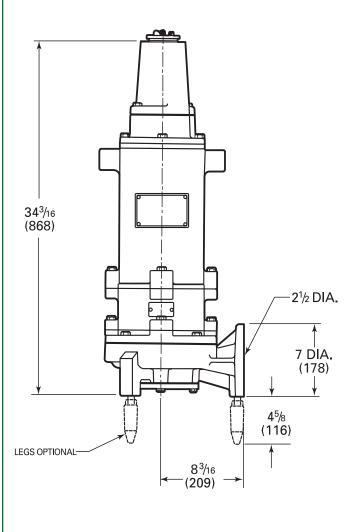
Detect water in seal housing. Activates warning light in control panel. (Test resistor on FM listed pumps only.)

SLEEVE BEARING

Takes radial shock load; provides flame path. (FM listed pumps only.)

VOLUTE CASE


Cast iron; horizontal discharge. (Drilled for 2½" pipe flange.)


GRINDER ASSEMBLY

Grinder impeller and shredding ring are replaceable without dismantling pump. Constructed of 440 SST hardened to 58-60 Rockwell.

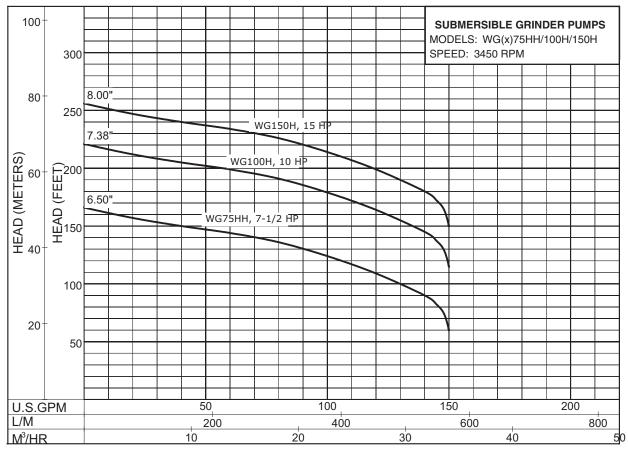
DIMENSIONS

() Dimensions in mm

Ductile iron recessed impeller

handles ground slurry without

clogging or binding. Provides


Reduces radial loads. Pump-out

vanes help keep trash from seal;

reduces pressure at seal faces.

unobstructed flow passage.

IMPELLER

PUMP PERFORMANCE

Available I	Vodels				Mot	or Electri	cal Data						
Standard	Explosion- Proof	НР	Volts	Phase	Hertz	Start Amps	Run Amps	Run KW	Service Factor KW	Start KVA	Run KVA	NEC Code Letter	Service Factor
WG75HH-03-25	WGX75HH-03-25	7½	200	3	60	192.7	39.7	8.1	11.9	66.8	10.6	н	1.0
WG75HH-23-25	WGX75HH-23-25	71⁄2	230	3	60	167.6	34.5	8.1	11.9	66.8	10.6	н	1.0
WG75HH-43-25	WGX75HH-43-25	71⁄2	460	3	60	83.8	17.3	8.1	11.9	66.8	10.6	н	1.0
WG75HH-53-25	WGX75HH-53-25	7½	575	3	60	67.0	13.8	8.1	11.9	66.8	10.6	Н	1.0
WG100H-03-25	WGX100H-03-25	10	200	3	60	256.2	55.6	10.2	15.5	88.7	11.8	G	1.0
WG100H-23-25	WGX100H-23-25	10	230	3	60	222.8	48.4	10.2	15.5	88.7	11.8	G	1.0
WG100H-43-25	WGX100H-43-25	10	460	3	60	111.4	24.2	10.2	15.5	88.7	11.8	G	1.0
WG100H-53-25	WGX100H-53-25	10	575	3	60	89.1	19.4	10.2	15.5	88.7	11.8	G	1.0
WG150H-03-25	WGX150H-03-25	15	200	3	60	256.2	68.4	17.6	19.7	88.7	16.0	D	1.0
WG150H-23-25	WGX150H-23-25	15	230	3	60	222.8	59.5	17.6	19.7	88.7	16.0	D	1.0
WG150H-43-25	WGX150H-43-25	15	460	3	60	111.4	29.8	17.6	19.7	88.7	16.0	D	1.0
WG150H-53-25	WGX150H-53-25	15	575	3	60	89.1	23.8	17.6	19.7	88.7	16.0	D	1.0

Preliminary My WG (X)75HH/100H/150H

SPECIFICATIONS

PUMP MODEL – Pump shall be of the centrifugal type Myers model ______ or equal with an integrally built-in grinder unit and submersible type motor. The grinder unit shall be capable of macerating all material in normal domestic and commercial sewage including reasonable amounts of foreign objects such as small wood, sticks, plastic, thin rubber, sanitary napkins, disposable diapers and the like to a fine slurry that will pass freely through the pump and 2" discharge pipe. Discharge shall be standard 2_" flange. Pump and motor assembly shall be FM listed for Class 1, Groups C & D explosion-proof service.

OPERATING CONDITIONS – Pump shall have a capacity of _____ GPM at a total head of _____ feet and shall use a _____ HP motor operating at 3450 RPM.

MOTOR – Pump motor shall be of the totally enclosed, submersible, squirrel cage induction type rated _____ horsepower at 3450 RPM, 60 Hz.

Motor shall be for three phase 200 volts_____, 230 volts_____, 460 volts_____ or 575 volts_____. Three phase motors shall be NEMA B type.

Stator winding shall be of the open type with Class H insulation good for 180°C (356°F) maximum operating temperature. Winding housing shall be filled with a clean high dielectric oil that lubricates bearings and seals and transfers heat from windings and rotor to outer shell. Air-filled motors that do not have the superior heat dissipating capabilities of oil-filled motors shall not be considered equal.

Motor shall have two heavy-duty ball bearings to support pump shaft and take radial and thrust loads and a sleeve guide bushing directly above the lower seal to take radial load and act as flame path for seal chamber. Ball bearings shall be designed for 50,000 hours B-10 life. Stator shall be heat shrunk into motor housing.

A heat sensor thermostat shall be attached to top end of motor winding and shall be connected in series with the magnetic contactor coil in control box to stop motor if motor winding temperature reaches 150°C (302°F). Thermostat to reset automatically when motor cools. Three heat sensors shall be used on 3 phase motors.

The common motor pump and grinder shaft shall be of #416 stainless steel threaded to take pump impeller and grinder impeller.

<u>SEALS</u> – Motor shall be protected by two mechanical seals mounted in tandem with a seal chamber between the seals. Seal chamber shall be oil filled to lubricate seal face and to transmit heat from shaft to outer shell.

Seal face shall be carbon and ceramic and lapped to a flatness of one light band. Lower seal faces shall be ______ carbide (optional).

A double electrode shall be mounted in the seal chamber to detect any water entering the chamber through the lower seal. Water in the chamber shall cause a red light to turn on at the control box. This signal shall not stop motor but shall act as a warning only, indicating service is required.

PUMP IMPELLER – The pump impeller shall be of the recessed Myers type to provide an open unobstructed passage through the volute for the ground solids. Impeller shall be ductile iron and shall be driven by a stainless key. Enclosed or semiopen pump impellers that might become obstructed during grinding or add excessive radial loads shall not be considered as equal.

<u>GRINDER CONSTRUCTION</u> – Grinder assembly shall consist of a single rotating grinder impeller and a single stationary shredding ring mounted directly below pump volute inlet. Grinder impeller shall thread onto shaft and shall be locked with a screw and washer. Shredding ring shall be held in place by a steel retaining clamp. Both shredding ring and grinder impeller shall be removable without dismantling pump. No adjustment of grinder assembly shall be necessary for proper grinder operation. Multiple grinder impeller assemblies requiring initial or periodic axial adjustment for proper operation shall not be considered equal. Grinder impeller and shredding ring shall be made of 440C stainless steel hardened to 58-60 Rockwell.

<u>CORROSION PROTECTION</u> – All iron castings shall be pretreated with phosphate and chromic rinse and to be painted before machining and all machined surfaces exposed to the sewage water to be repainted. All fasteners to be 304 stainless steel.

BEARING END CAP - Upper motor bearing cap shall be a separate casting for easy mounting and replacement.

POWER CABLES – Power cord and control cord shall be double sealed. The power and control conductor shall be single strand sealed with epoxy potting compound and then clamped in place with rubber seal bushing to seal outer jacket against leakage and to provide for strain pull. Cords shall withstand a pull of 300 pounds.

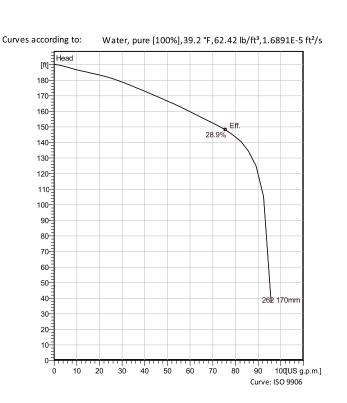
Insulation of power and control cords shall be type SOOW. Both control and power cords shall have a green carrier ground conductor that attaches to motor frame.

Pentair Water

F. E. Myers, 1101 Myers Parkway, Ashland, Ohio 44805-1969 419/289-1144, FAX: 419/289-6658, www.femyers.com

K418**Page494** Printed in U.S.A.

Myers (Canada), 269 Trillium Drive, Kitchener, Ontario N2G 4W5 519/748-5470, FAX: 519/748-2553


MP 3127 HT 3~ 262

Semi-open multi-channel impellers with integral grinder cutter in single volute casing for liquids containing solids and fibres.

Technical specification

Configuration

Motor number M3127.890 21-11-2AL-W 11hp Impeller diameter 170 mm Installation type P - Semi permanent, Wet

Discharge diameter 1 15/16 inch

Pump information

Impeller diameter 170 mm

Discharge diameter 1 15/16 inch

Inlet diameter 50 mm

Maximum operating speed 3495 rpm

Number of blades 6 **Materials**

Impeller Grey cast iron

Stator housing material Grey cast iron

Project	Created by	Last update
Block	Created on	2/7/2020

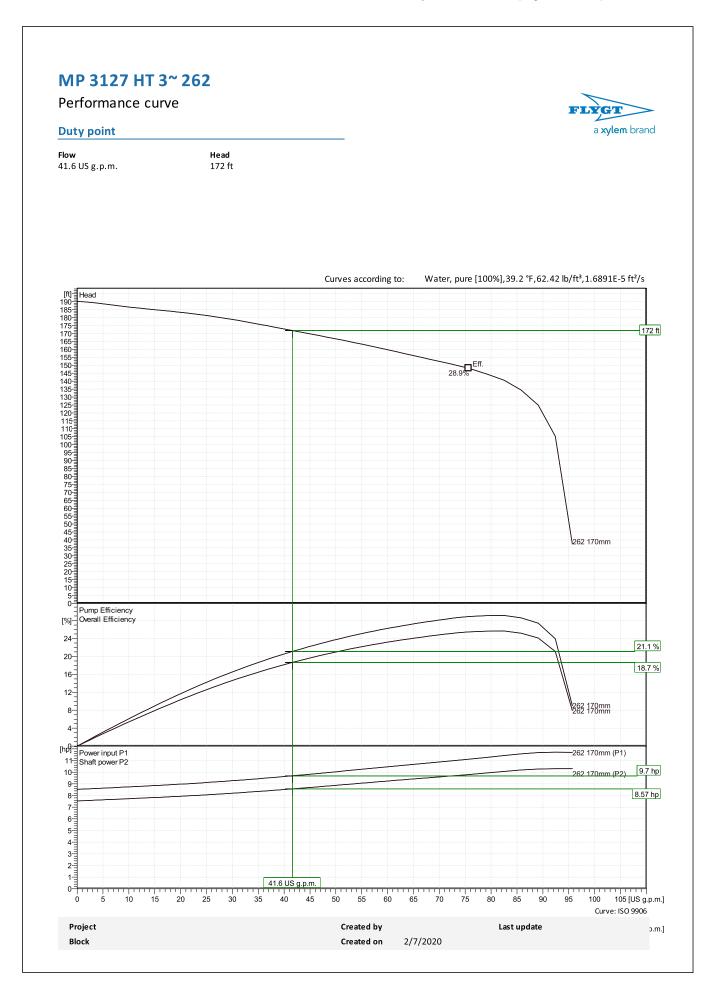
MP 3127 HT 3~ 262

Technical specification FLYGT **Motor - General** a **xylem** brand Motor number Phases Rated speed Rated power M3127.890 21-11-2AL-W 11hp 3495 rpm 11 hp 3~ **Approval** FM Number of poles Rated current Stator variant 2 13 A 12 Frequency Rated voltage Insulation class Type of Duty 60 Hz 460 V н S1 **Motor - Technical** Power factor - 1/1 Load Motor efficiency - 1/1 Load Total moment of inertia Starts per hour max. 0.92 87.6 % 0.285 lb ft² 30

Power factor - 1/2 Load 0.85

Power factor - 3/4 Load

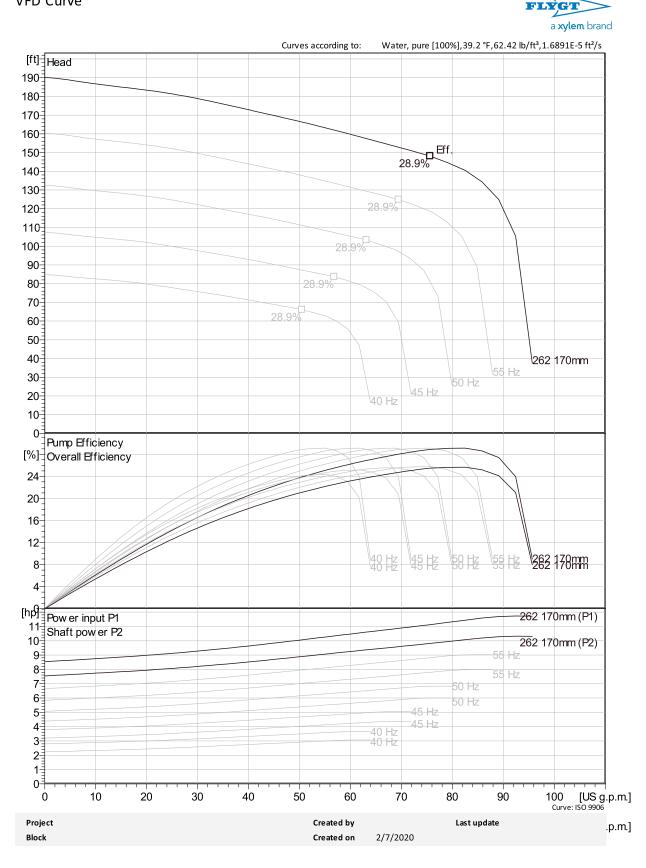
0.90

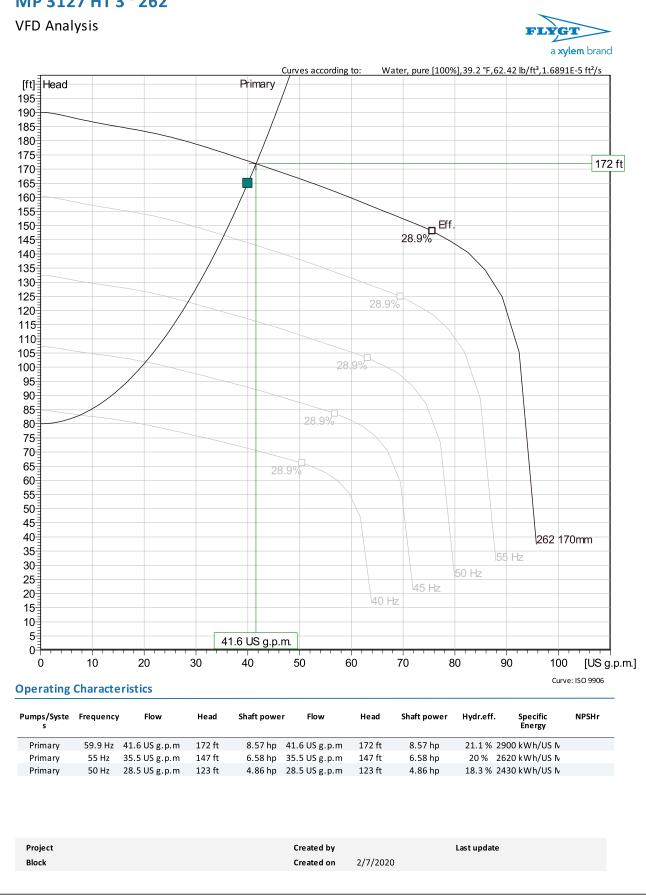

87.6 % Motor efficiency - 3/4 Load 88.4 %

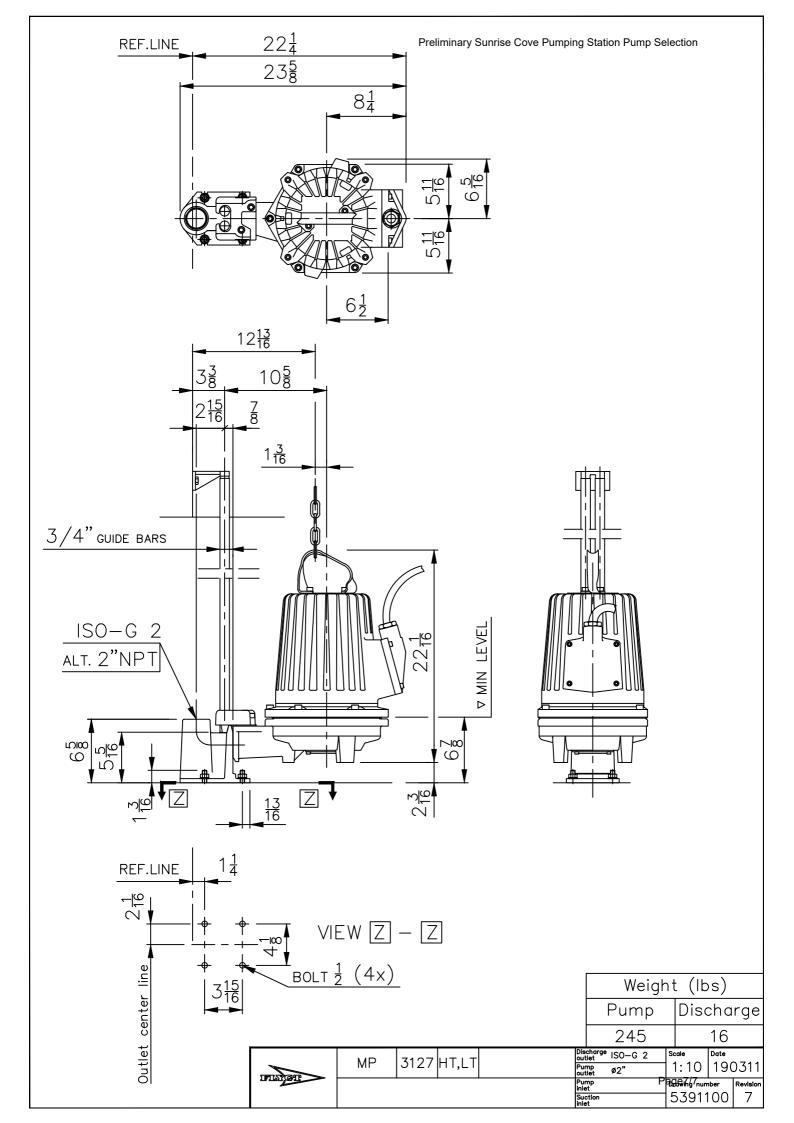
Motor efficiency - 1/2 Load 87.7 % 0.285 lb ft² Starting current, direct starting

110 A

Starting current, star-delta 36.7 A


Project	Created by		Last update
Block	Created on	2/7/2020	


MP 3127 HT 3~ 262 **Duty Analysis** ŻСЛ a xylem brand Water, pure [100%],39.2 $^{\circ}\text{F}$,62.42 lb/ft³,1.6891E-5 ft²/s Curves according to: [ft] Head Primary 190 185 180 175 172 ft 170 165 160 155 28.9% Eff. 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75-70 65 60 55 50 45 40 262 170mm 35-30-25 20 15 10 5 41.6 US g.p.m. 0-10 20 30 40 50 60 70 80 0 90 100 [US g.p.m.] Curve: ISO 9906 **Operating characteristics** Pumps/Systems Head Shaft power Flow Head Shaft power Hydr.eff. Specific energy NPSHr Flow 21.1 % 2900 kWh/US M Primary 41.6 US g.p.m. 172 ft 8.57 hp 41.6 US g.p.m. 172 ft 8.57 hp Project Created by Last update Block 2/7/2020 Created on


MP 3127 HT 3~ 262

VFD Curve

MP 3127 HT 3~ 262

Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

Technical specification

55 50				45	6 326mm
50- 45-					5 5201111
40					
35					
30					
25					
20					-
15					-
10					
5					
0 0 0	400	800	1200 16		IS g.p.m.] ISO 9906

Configuration

Motor number N3202.185 30-19-4AA-W 30KW Impeller diameter 326 mm Installation type P - Semi permanent, Wet

Discharge diameter 5 7/8 inch

Pump information

Impeller diameter 326 mm

Discharge diameter 5 7/8 inch

Inlet diameter 200 mm

Maximum operating speed 1470 rpm

Number of blades

2

Project	Created by	Last update
Block	Created on	2/24/2020

Power factor - 3/4 Load

Power factor - 1/2 Load

0.87

0.79

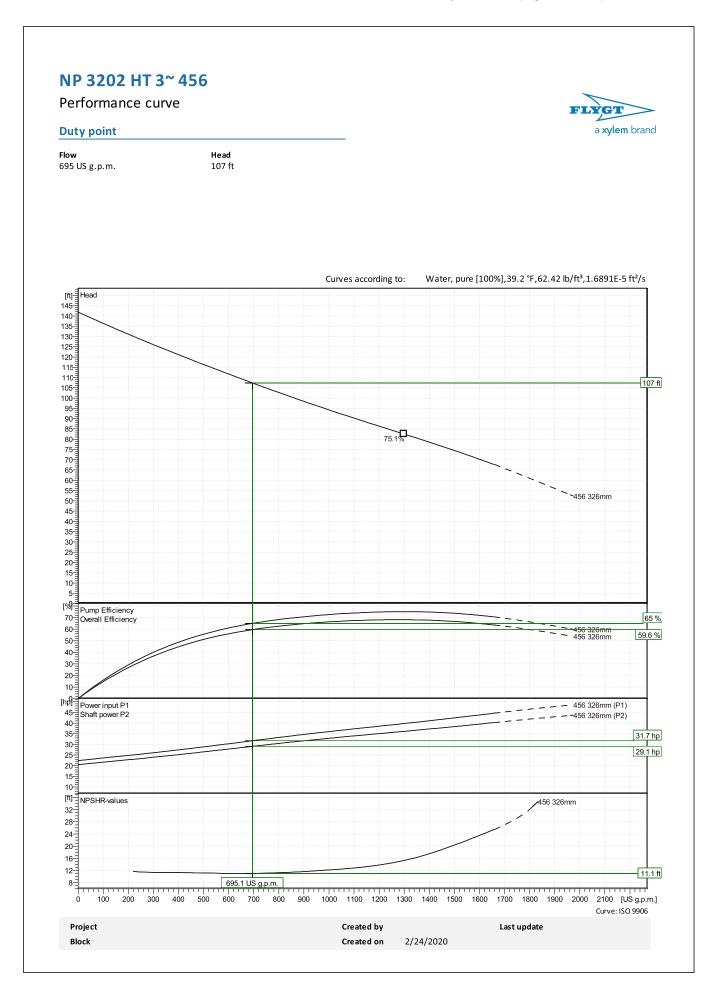
Technical specifica	tion		FLYGT
Motor - General			a xylem brand
Motor number	Phases	Rated speed	Rated power
N3202.185 30-19-4AA-W 30KW	3~	1470 rpm	40 hp
Approval	Number of poles	Rated current	Stator variant
No	4	56 A	1
Frequency	Rated voltage	Insulation class	Type of Duty
50 Hz	380 V	н	S1
Motor - Technical			
Wotor - recilitat			
Power factor - 1/1 Load 0.90	Motor efficiency - 1/1 Load 90.0 %	Total moment of inertia 7.89 lb ft ²	Starts per hour max. 30

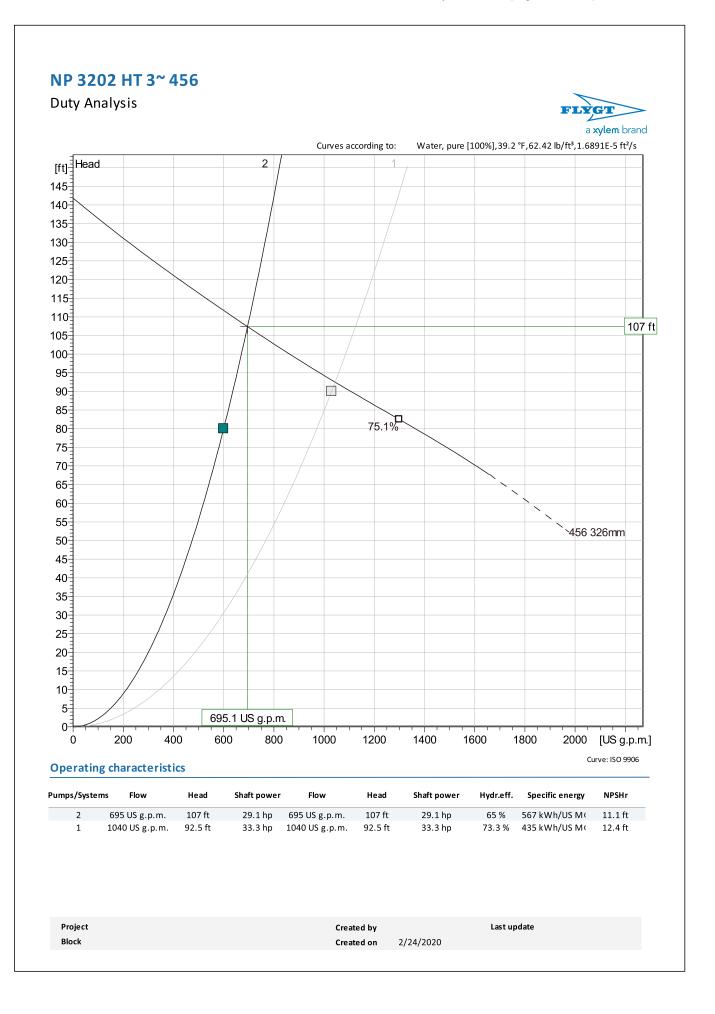
340 A

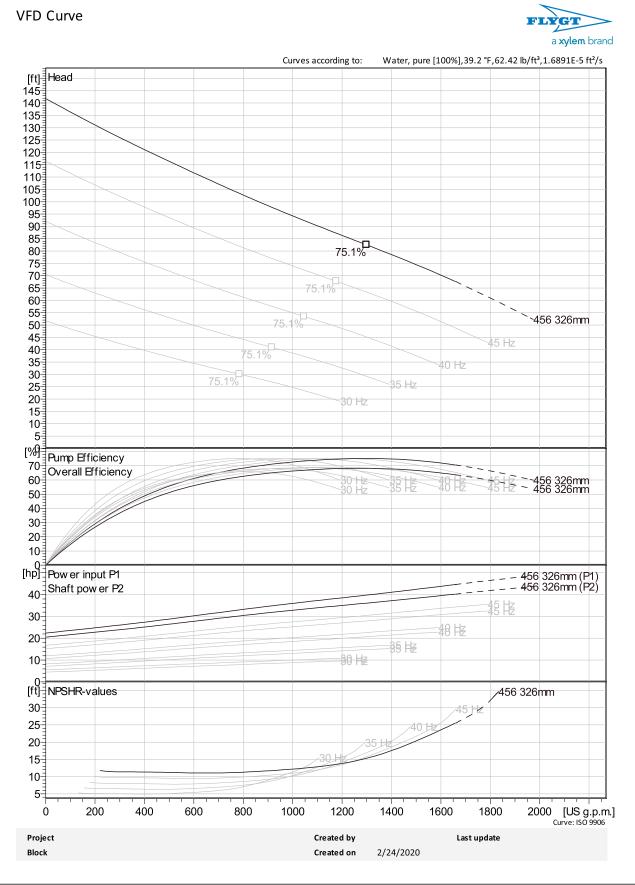
113 A

Starting current, direct starting

Starting current, star-delta


Motor efficiency - 3/4 Load

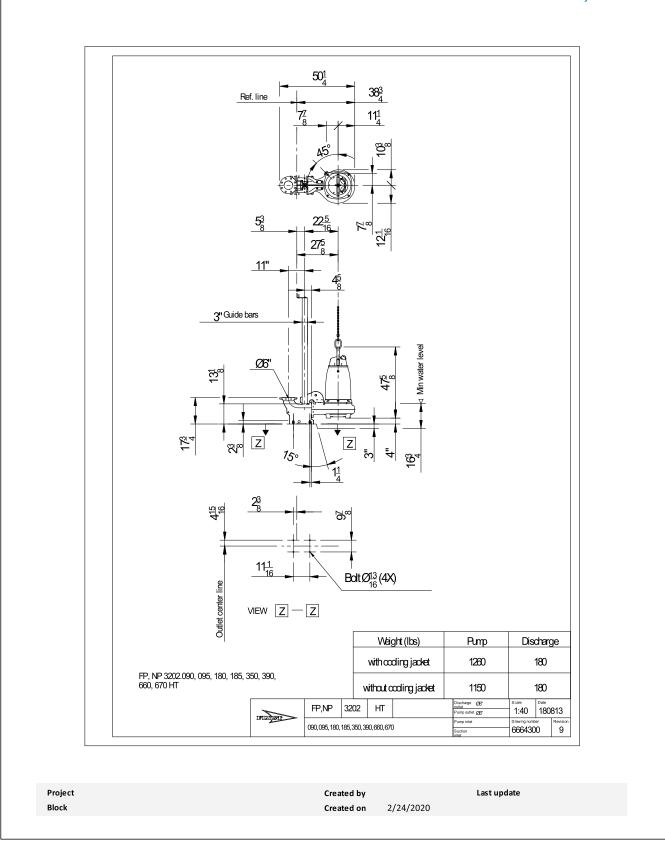

Motor efficiency - 1/2 Load


91.5 %

91.5 %

Project	Created by	Last update
Block	Created on 2/24/20	020

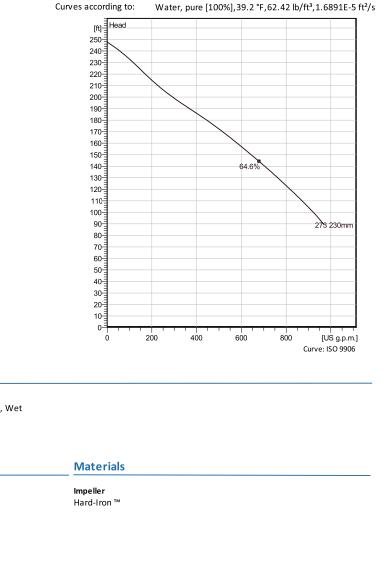
NP 3202 HT 3~ 456 **VFD** Analysis ŻСЛ a xylem brand Curves according to: Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s [ft] Head 2 145 140 135 130-125 120 115 110 107 ft 105 100-95 Ø 90-85-75.1% 80-75 70-75.1% 65 60-55 75.1% `456 326mm 50-45 45 Hz 75.1% 40-35 40 Hz 30-75.1% 35 Hz 25 20-30 Hz 15-10-5 695.1 US g.p.m. 0-0 200 400 600 800 1000 1200 1400 1600 1800 2000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Specific Energy Pumps/Syste Frequency Flow Shaft power Shaft power NPSHr Head Flow Head Hydr.eff. 2 49.7 Hz 695 US g.p.m. 107 ft 29.1 hp 695 US g.p.m. 107 ft 29.1 hp 65 % 567 kWh/US M 11.1 ft 21.5 hp 629 US g.p.m. 45 Hz 629 US g.p.m. 88 ft 88 ft 21.5 hp 65 % 464 kWh/US M 9.42 ft 2 15.1 hp 559 US g.p.m. 69.5 ft 15.1 hp 65 % 370 kWh/US M 2 40 Hz 559 US g.p.m. 69.5 ft 7.8 ft Project Created by Last update Block Created on 2/24/2020


NP 3202 HT 3~ 456 **VFD** Analysis ŻСЛ a xylem brand Curves according to: Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s [ft] Head 2 145 140 135-130-125 120 115 110 107 ft 105 100-95 Ø 90-85-75.1% 80-75 70-75.1% 65 60-55 75.1% `456 326mm 50-45 45 Hz 75.1% 40-35 40 Hz 30-75.1% 35 Hz 25 20-30 Hz 15-10-5 695.1 US g.p.m. 0-0 200 400 600 800 1000 1200 1400 1600 1800 2000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Pumps/Syste Frequency s Specific Energy Shaft power Shaft power NPSHr Flow Head Flow Head Hydr.eff. 2 35 Hz 489 US g.p.m. 53.2 ft 10.1 hp 489 US g.p.m. 53.2 ft 10.1 hp 65 % 288 kWh/US M 6.3 ft 6.38 hp 419 US g.p.m. 2 30 Hz 419 US g.p.m. 39.1 ft 39.1 ft 6.38 hp 65 % 222 kWh/US M 4.93 ft 49.7 Hz 1040 US g.p.m 92.5 ft 33.3 hp 1040 US g.p.m 73.3 % 435 kWh/US M 1 92.5 ft 33.3 hp 12.4 ft Project Created by Last update Block Created on 2/24/2020

NP 3202 HT 3~ 456 **VFD** Analysis ŻСЛ a xylem brand Curves according to: Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s [ft] Head 2 145 140 135 130-125 120 115 110 107 ft 105 100-95 Ø 90-85-75.1% 80-75 70-75.1% 65 60-55 75.1% `456 326mm 50-45 45 Hz 75.1% 40-35 40 Hz 30-75.1% 35 Hz 25 20-30 Hz 15-10-5 695.1 US g.p.m. 0-0 200 400 600 800 1000 1200 1400 1600 1800 2000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Specific Energy Pumps/Syste Frequency Flow Shaft power Shaft power NPSHr Head Flow Head Hydr.eff. 1 45 Hz 946 US g.p.m. 75.9 ft 24.8 hp 946 US g.p.m. 75.9 ft 24.8 hp 73.3 % 355 kWh/US M 10.6 ft 841 US g.p.m. 17.4 hp 841 US g.p.m. 8.79 ft 40 Hz 60 ft 60 ft 17.4 hp 73.3 % 282 kWh/US M 1 736 US g.p.m. 45.9 ft 11.7 hp 736 US g.p.m. 45.9 ft 11.7 hp 73.3 % 219 kWh/US M 1 35 Hz 7.1 ft Project Created by Last update Block Created on 2/24/2020

NP 3202 HT 3~ 456 **VFD** Analysis ŻGT a xylem brand Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s Curves according to: [ft] Head 2 145 140 135 130-125 120 115 110 107 ft 105 100-95 Ø 90-85-75.1% 80-75 70-75.1% 65-60-~ 55 ~ 75.1% `456 326mm 50-45 45 Hz 75.1% 40-35 40 Hz 30-75.1% 35 Hz 25 20-30 Hz 15 10-5 695.1 US g.p.m. 0-0 200 400 600 800 1000 1200 1400 1600 1800 2000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Specific Energy Pumps/Syste Frequency s Head Shaft power Shaft power Hydr.eff. NPSHr Flow Flow Head 73.3 % 167 kWh/US M 1 30 Hz 631 US g.p.m. 33.7 ft 7.34 hp 631 US g.p.m. 33.7 ft 7.34 hp 5.55 ft Project Created by Last update 2/24/2020 Block Created on

Dimensional Drawing



Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

Technical specification

Configuration

Motor number N3202.185 30-19-2AA-W 32KW Impeller diameter 230 mm Installation type P - Semi permanent, Wet

Discharge diameter 3 15/16 inch

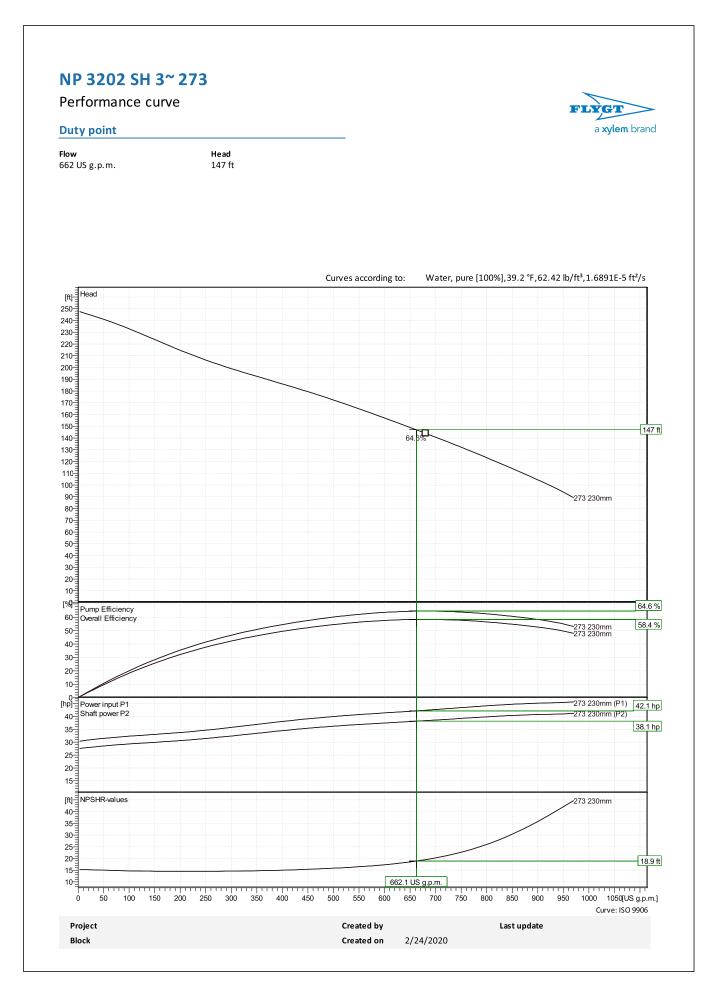
Pump information

Impeller diameter 230 mm

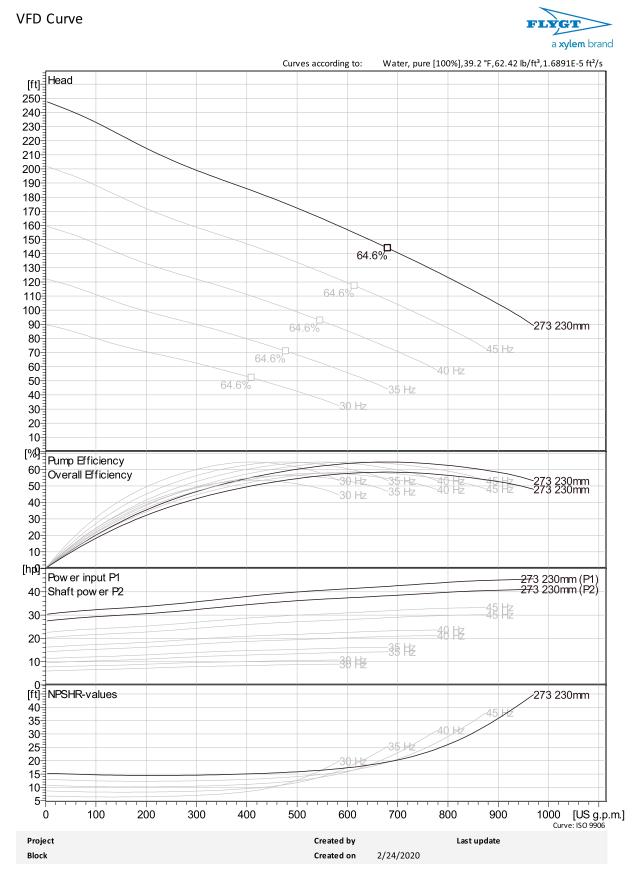
Discharge diameter 3 15/16 inch

Inlet diameter 150 mm

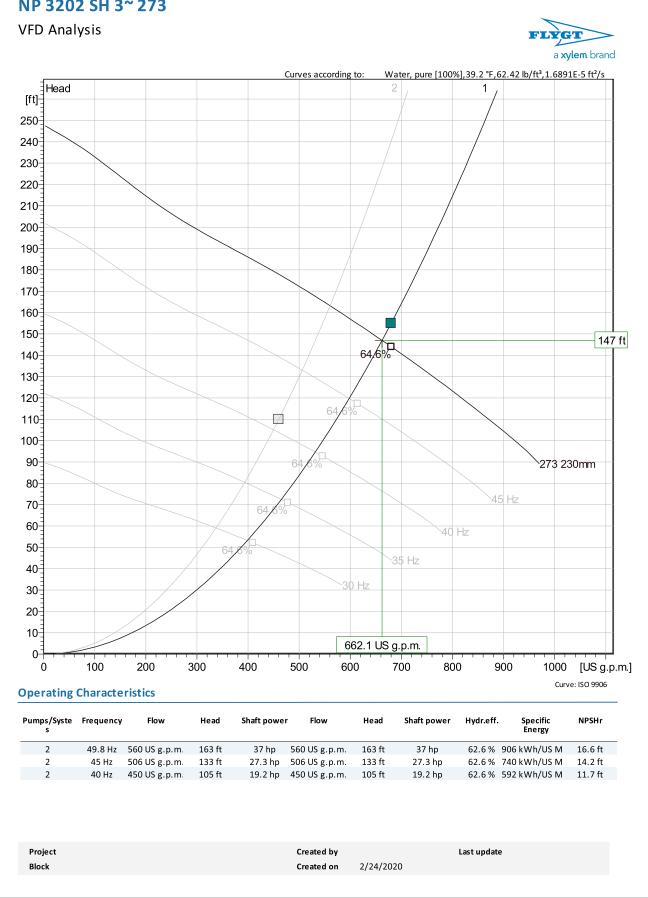
Maximum operating speed 2950 rpm


Number of blades

2

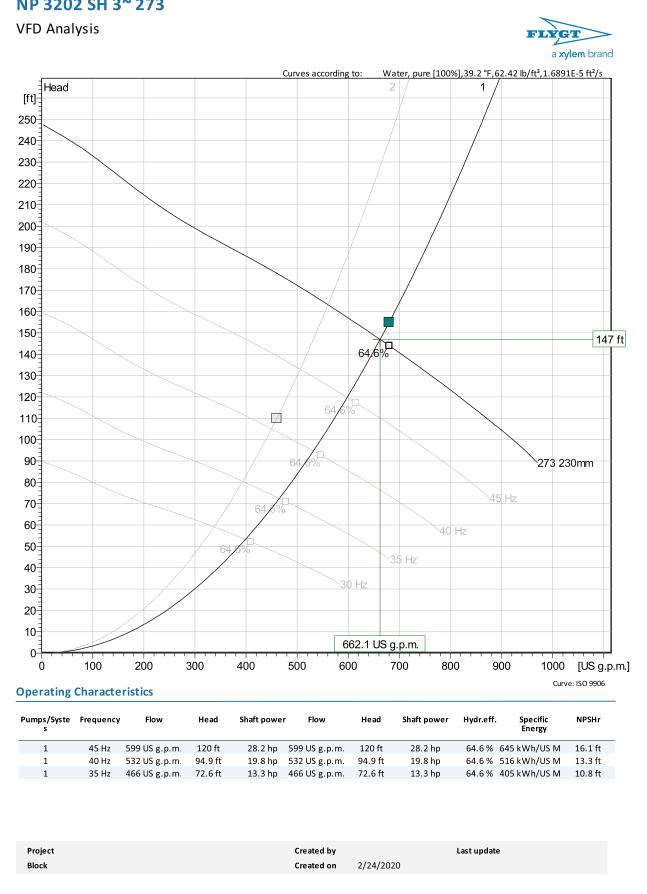

ProjectCreated byLast updateBlockCreated on2/24/2020

NP 3202 SH 3~ 273 Technical specification FLYGT **Motor - General** a **xylem** brand Rated speed Motor number Phases Rated power N3202.185 30-19-2AA-W 2950 rpm 3~ 43 hp 32KW **Approval** No Number of poles Rated current Stator variant 2 58 A 38 Rated voltage Insulation class Type of Duty Frequency 50 Hz 380 V н S1 **Motor - Technical** Power factor - 1/1 Load Motor efficiency - 1/1 Load Total moment of inertia Starts per hour max. 0.93 90.1 % 3.76 lb ft² 30 Power factor - 3/4 Load Motor efficiency - 3/4 Load Starting current, direct starting 0.92 90.6 % 405 A Motor efficiency - 1/2 Load Power factor - 1/2 Load Starting current, star-delta 0.88 90.0 % 135 A

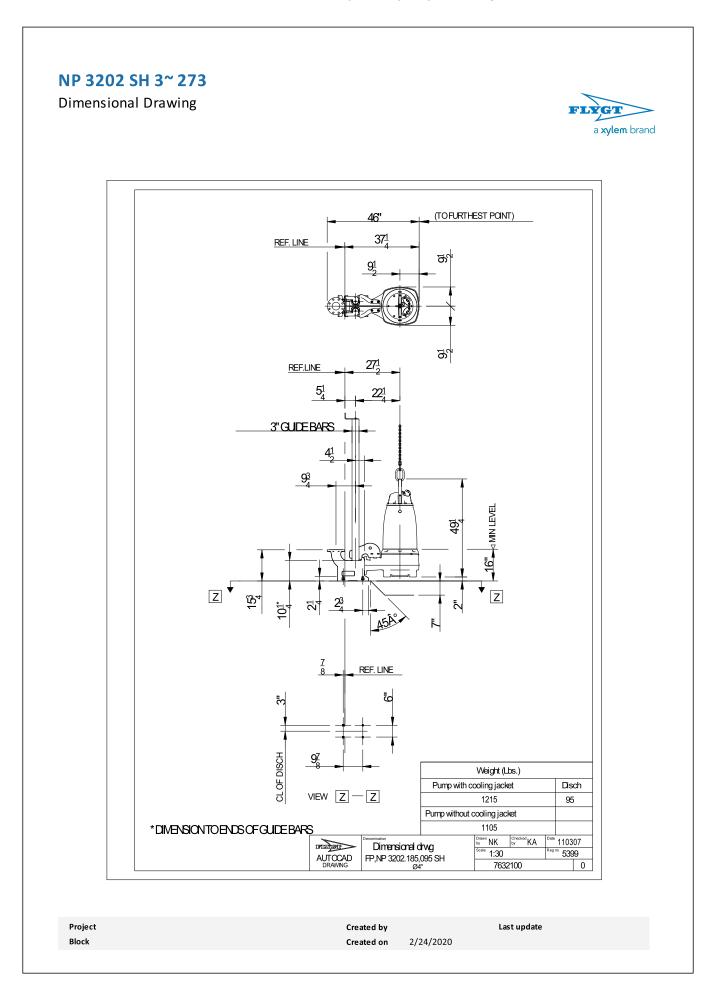

Project	Created by	Last update
Block	Created on	2/24/2020

NP 3202 SH 3~ 273 **Duty Analysis** FLYGI a **xylem** brand Curves according to: Water, pure [100%],39.2 $^{\circ}\text{F}$,62.42 lb/ft³,1.6891E-5 ft²/s Head 1 [ft] 250-240-230 220 210 200 190 180 170 160 150 147 ft 64/6% 140 130 120 110 Ø 100-90-273 230mm 80 70-60 50-40 30-20 10 662.1 US g.p.m. 0-500 100 200 700 0 300 400 600 800 900 1000 [US g.p.m.] Curve: ISO 9906 **Operating characteristics** Pumps/Systems Flow Head Shaft power Flow Head Shaft power Hydr.eff. Specific energy NPSHr 62.6 % 906 kWh/US M(2 560 US g.p.m. 163 ft 37 hp 560 US g.p.m. 163 ft 37 hp 16.6 ft 1 662 US g.p.m. 147 ft 38.1 hp 662 US g.p.m. 147 ft 38.1 hp 64.6 % 791 kWh/US M(18.9 ft Project Created by Last update Block 2/24/2020 Created on

NP 3202 SH 3~ 273



NP 3202 SH 3~ 273 **VFD** Analysis FLŶGI a xylem brand Curves according to: Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s Head 2 1 [ft]-250-240 230-220-210 200 190 180-170 160 150 64,6% 140 130 120-Ø 110 100 90-273 230mm 80-45 Hz 70-60-40 Hz 50-35 Hz 40-30-20-10-662.1 US g.p.m. 0-0 100 200 300 400 500 600 700 800 900 1000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Shaft power Specific Energy Pumps/Syste Frequency s Shaft power NPSHr Flow Head Flow Head Hydr.eff. 2 35 Hz 394 US g.p.m. 80.6 ft 12.8 hp 394 US g.p.m. 80.6 ft 12.8 hp 62.6 % 465 kWh/US M 9.47 ft 8.09 hp 338 US g.p.m. 2 30 Hz 338 US g.p.m. 59.3 ft 59.3 ft 8.09 hp 62.6 % 362 kWh/US M 7.4 ft 64.6 % 791 kWh/US M 1 49.8 Hz 662 US g.p.m. 147 ft 38.1 hp 662 US g.p.m. 147 ft 38.1 hp 18.9 ft


Block Created on 2/24/2020	Project	Created by	Last update
	Block	Created on	2/24/2020

147 ft

NP 3202 SH 3~ 273

NP 3202 SH 3~ 273 **VFD** Analysis FLYGT a **xylem** brand Curves according to: Water, pure [100%],39.2 °F,62.42 lb/ft³,1.6891E-5 ft²/s Head 2 1 [ft]-250-240 230-220-210 200 190 180-170 160 150 147 ft 64,6% 140 130 120-110 Ø 100 90-273 230mm 80-45 Hz 70-60 40 Hz 50-35 Hz 40-30-20-10-662.1 US g.p.m. 0-0 100 200 300 400 500 600 700 800 900 1000 [US g.p.m.] Curve: ISO 9906 **Operating Characteristics** Pumps/Syste Frequency s Specific Energy Shaft power Shaft power NPSHr Flow Head Flow Head Hydr.eff. 1 30 Hz 399 US g.p.m. 53.4 ft 8.34 hp 399 US g.p.m. 53.4 ft 8.34 hp 64.6 % 314 kWh/US M 8.41 ft Project Created by Last update 2/24/2020 Block Created on

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

www.ghd.com